Geotechnical description of Yellow Sea sediments with some ...GEOTECHNICAL DESCRIPTION OF YELLOW SEA...

Post on 23-Jan-2021

13 views 0 download

Transcript of Geotechnical description of Yellow Sea sediments with some ...GEOTECHNICAL DESCRIPTION OF YELLOW SEA...

DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY

Geotechnical description ofYellow Sea sediments

with some preliminary geological interpretations

by

James S. Booth and William J. Winters

Open-File Report 89-149

This report is preliminary and has not been reviewedfor conformity with U.S. Geological Survey editorial

standards and stratigraphic nomenclature. Any use oftrade names is for descriptive purposes only and does

not imply endorsement by the USGS.

Woods Hole, Massachusetts 02543

February 1989

GEOTECHNICAL DESCRIPTION OFYELLOW SEA SEDIMENTS

with some preliminary geological interpretations

James S. Booth and William J. Winters

INTRODUCTIONIn August 1985, core samples and high-resolution seismic reflection data were col­

lected in the Yellow Sea near and south of the Shandong Peninsula (Figure 1). As one part of this study, a geotechnical investigation was conducted to establish the basic en­ gineering properties of the sediment, to help identify and analyze potential geohazards, and to supply additional data pertinent to the investigation of geologic processes in the study area. The following is a preliminary report on that work; it provides a general sum­ mary of the results of the geotechnical laboratory tests, a brief engineering description of the Yellow Sea sediments, and initial interpretations of the geologic environment as in­ ferred from the geotechnical data.

This investigation received its primary support from the National Science Foundation and the Academia Sinica of the Peoples Republic of China through the Woods Hole Oceanographic Institution (John D. Milliman, Principal Investigator) and the Institute of Oceanology at Qingdao (Professor Yun-shan Qin , Chief Scientist).

We most gratefully acknowledge the invitation, support and cooperation of John Milliman. We also acknowledge the assistance and cooperation of Charles A. Nittrouer and David J. DeMaster of North Carolina State University, also Principal Investigators in the research program, and of their students, Clark Alexander and Ross Elliott, whose help during the field work was invaluable.

METHODS

FieldThe sampling program was carried-out August 12-18, 1985 aboard the R/V Science

1, a research vessel operated by the Institute of Oceanology for Academia Sinica. Eleven Kasten cores and eight box cores were recovered from a total of 9 stations (Figure 1). The Kasten cores were tested for vane shear strength at sea and subsam- pled for later, onshore laboratory index property testing (i.e., water content, liquid limit, plastic limit, and grain specific gravity); the box cores were subcored with 10-cm I.D. poly-vinyl-chloride (PVC) pipe and stored for later triaxial and consolidation testing. Core and site information are provided in Table 1.

CONTENTS

Introduction 1

Methods 1field 1laboratory 3

Results and Interpretations 3shear strength 3sensitivity 4index properties 5consolidation states and properties 6strength parameters 8

Summary 8geological 8geotechnical 9

References 9

Appendices 17

A: nomenclature and symbols 17

B: results of vane shear and index property tests 20tabular data 21vane shear strength profiles 27 liquid limit, plastic limit, and water content profiles 38 water content, bulk density, porosity, and grain specific

gravity profiles 58

C: results of constant-rate-of-strain consolidation tests 78tabular data 79unedited test plots 81

D: results of consolidated-isotropic-undrained triaxial tests 237tabular data 238unedited individual test plots 240unedited multiple test plots 260

Table I Core listing and station data

Core Length (m) Latitude

KC-1A KC-1B

BC-4 KC-4

BC-5 KC-5

BC-6 KC-6

BC-7KC-7AKC-7B

BC-8 KC-8

BC-9 KC-9

BC-10 KC-10

BC-11 KC-11

1.052.25

0.502.53

0.671.99

0.672.92

0.651.633.04

0.683.02

0.651.93

0.652.32

0.651.27

34° 27.95'N 122° 29.98'EM ii

35° 05.51'N 123° 33.41'Eii ii

35° 30.00'N 123° 53.00'Eii ii

35° 43.00'N 123° 11.37' Eii ii

36° 56.20'N 123° 00.80'EH ii I H

36° 43.32'N 123° 00.00'EH H

36° 25.00'N 123° 00.00'EH H

37° 31.33'N 122° 59.77'E» H

36° 07.61 'N 121° 49.08'E

Longitude Water Depth (m)

59

72

79

73

28

34

66

54

38

BC = box core; KC = Kasten core

Undrained shear strength (S ) was measured at sea with a motorized vane shear

device. The four-bladed, 12.7-mm-square vane was inserted normal to the long direction of the core and rotated at approximately 84°/min. Measurements were made at 25 cm intervals beginning at 50 cm below the top of the core (the upper 50 cm was removed for radiometric dating). Although the North Carolina State University Kasten corer (Kuehl and others, 1985) minimizes mechanical disturbance, some disturbance probably took place during coring due to the general softness of the sediment. Thus, because the sediments are fine-grained, the strength values reported herein are probably less than the in-situ values. The inserted vane was rotated 360° after the initial failure and the re­ molded strength, Sur> was measured. The third vane shear strength parameter,

sensitivity (St), which is the "natural" shear strength to remolded shear strength ratio,

was also calculated. Subsamples were taken from the location of the vane measure­ ment for later index property testing. The subsamples were placed in plastic bags, sealed, and stored in capped core liner sections.

LaboratoryThe geotechnical index property tests were conducted as indicated:

1) Water content (w) was measured in accordance with standard test method D2216-80 of the American Society for Testing and Materials (ASTM, 1985), except that the samples were dried at 50° C.

2) Liquid limit (w^) values were determined by the cone

penetrometer method (standard test BS 1377 of the British Standards Institution).

3) Plastic limit (wp) was measured in accordance with standard

test method D4318-84 (ASTM, 1985).4) Grain specific gravity (GJ measurements were made with an

o

air-comparison pycnometer. The sample chamber was put under a vacuum, then purged with helium.

From these parameters, Plasticity Index (U), Liquidity Index (I,), bulk density (pJ, void

ratio (e), and porosity (n) were calculated. All index property data were salt-correctedusing a salinity of 35°/oo.Constant-rate-of-strain consolidation tests were performed at the top, middle, andbottom of each subcore. Standard test method D4186-82 (ASTM, 1985) was used. Themaximum past stress experienced by the sample (cy'vm), compression index (Cc),

coefficient of consolidation (cv), and coefficient of permeability (k) were derived from the

test data.Consolidated, undrained triaxial tests were conducted on selected subcores.

Because these PVC cores were relatively short, it was necessary to use small specimens (35 mm diam. x 70 mm length) in the triaxial testing. The method used was based on the ASTM (1985) standard test for unconsolidated, undrained compressive strength (D2850-82). The consolidation stress levels used were (1) assumed in situ stress, (2) 70 kPa, (3) 140 kPa, and (4) 210 kPa. Shearing was accomplished at a rate of 0.15 mm/min. During the tests, data were collected automatically by an HP-85 computer-scanner system. From the basic data set, the angle of internal friction with respect to effective stress (0'), effective stress cohesion (c'), percent strain at failure,undrained shear strength (q mav), and other strength, stress, and strain parametersrn3xwere determined.

Details of all testing procedures are given in Winters (1988).

RESULTS AND INTERPRETATIONS

Shear StrengthThe sediments are extremely weak. The highest undrained vane shear strength (Su )

measured was 6.6 kPa (Table 2, Appendix B)) and about one-fifth of the 68 samples possessed strengths below the threshold of measurement of the vane shear apparatus

(i.e., 0.2 kPa). Similarly, four-fifths of the attempts to measure remolded strength were unsuccessful. The down-core strength profiles (Figure 2) show a tendency for S to

increase with subbottom depth. The predicted strength profile (prediction based on the assumption that the sediments are normally consolidated, and therefore have an S /a'

value of approximately 0.24) for each of the selected cores is plotted along with the measured profile. The agreement between the two plots is reasonable in each case, which, again, implies a depositional environment (i.e., net sediment accumulation) or, at least, an environment of nonerosion.

Table 2 Vane shear strength and index property data summary

Property Measurements natural shear strength (Su)[kPa] 54 *

sensitivity (St) 14 f

natural water content (w)[%] 100 grain specific gravity (G_) 100

o

bulk density (pt)[g/cm3] 100

porosity (n)[%] 100

liquid limit (WL)[%] 100

plastic limit (wp)[%] 100

plasticity index (I p)[%] 100

liquidity index (IL) 100

Minimum <0.2 **

1.6

322.65

1.35

45

32

18

11

0.67

Average <3.0 ***

>3.6 ft

682.68

1.64

62

58

25

33

1.26

Maximum 6.6

>6.3 ft

1442.73

1.93

79

102

36

71

2.03

* In 14 Of 68 tests the sediment was too weak for accurate strength determination with the vane shear apparatus

** 0.2 kPa is the assumed limit of accurate measurement*** Values below threshold were not used in the calculation. Therefore average is actually less than 3.0 t strength below measurement threshold in 54 of 68 tests ft Values below threshold were not used, so numbers represent minima

From a geotechnical perspective, the strength data indicate that these sediments are "very soft" (Su < 12.2 kPa) according to classification of Terzaghi and Peck (1967).

SensitivityThe ratio of "natural" undrained shear strength to remolded shear strength is termed

sensitivity (S.); it is a measure of the strength lost by a sediment when its basic structure

has been destroyed. In the majority of cases, remolded shear strength was too low to be measured accurately: only 14 sensitivity determinations were possible, and most of these came from three cores (Table 2). For this reason, and because not even an ap­ proximate value can be assigned to the mean or range, sensitivity will not be discussed.

Index PropertiesNatural water content (w), grain specific gravity (Gs), liquid limit (WL), and plastic limit

(Wp), and related properties (bulk density (pt), porosity (n), plasticity index (l p) and

liquidity index (I L)) constitute the suite of index properties for this study. With the excep­

tion of grain specific gravity, all of these properties vary over a considerable range (Table 2, Appendix B). In general, this implies a highly variable texture and (or) mineral­ ogy within this basically fine-grained sediment.

Variation in the natural water content of these sediments (32% to 144%) is particularly conspicuous. Because vane shear strengths are uniformly low throughout the cores, and because all cores represent only the upper few meters of sediment, variable degrees of compaction are apparently not responsible for the wide range in water contents. Thus, an environment characterized by a broad range in sediment texture is indicated. Moreover, the average w of 68% suggests that silt is a prominent size class because clay-dominated fine-grained sediment ususally has a much higher water content. Spatially, as shown in Figure 3, the higher water content values are associated with the deeper, more distal core sites (with respect to presumed primary point source: the mouth of the Yellow River (Huanghe)). This implies that the sediment texture becomes finer in the offshore direction. The sediment grain-size distribution map of Milliman and others (1985) and the water content isopleth map of this study (Figure 3) are, in fact, similar in the patterns they show. The higher water contents are associated with the finer grain sizes.

There is a tendency for water content to decrease down core, which is the expected trend in any accumulating sediment column below the level of mobil (current-worked) sediment and (or) zone of bioturbation. This gradual dewatering is a response to the ever-increasing degree of compaction upon burial. The index properties that are related to water content in a fully water-saturated sediment (i.e., no gas), specifically bulk density and porosity, display similar variability and trends (see Appendix A), and at average values of 1.64 and 62%, respectively, also suggest that silt is an important size class.

The same basic implications with regard to sediment grain size are present in the Atterberg limits data. Both liquid and plastic limit vary over a wide range (Table 2) and thus suggest a wide range in texture and, possibly, mineralogy. As shown on the com­ posite plasticity chart (Figure 4), however, all the sediments can be basically classified as clays of medium to high compressibility (engineering classification: CL, CH) where, in the engineering sense, "clays" refers to any fine-grained sediment whose behavior is af­ fected by clay minerals. The exact percentages of silt and clay in the textural sense is not known. As with the water contents and related data, plasticity is highest in the sam­ ples from the sites in deeper water and probably reflects the sediment grain size distri­ bution.

Liquid limit, which is a fairly sensitive index of changes in texture and composition, is generally invariant down core. Figure 5 shows this consistency as well as the aforemen­ tioned spatial trend. Thus, assuming a consistent composition, texture is probably relatively consistent down core, indicating that the same or similar local depositional en­ vironments have been sustained during recent geologic time. However, as shown in

Figure 6, there are exceptions. The bottom of core KC-4 is apparently much coarser than the top. Accordingly, the fine-grained sediment may be only a veneer over parts of the region.

Liquidity indices are characteristically greater than one, which is typical of surface sediments, but also indicates a lack of recent, significant erosion.

Changes in grain specific gravity indicate changes in composition. The relatively nar­ row range shown in these data (2.65-2.73), however, is characteristic of mineral assem­ blages dominated by marine terrigenous elastics and does not portend significant com­ positional changes. We believe that the G data are consistent with the notion that the

o

sediment in the study area is basically fine-grained and is fairly uniform in composition (mineralogy, organic content, and other components).

Consolidation states and propertiesThe results of the consolidation tests, along with the strength and index property tests,

indicate that the seafloor off the Shandong Peninsula is fundamentally a depositional surface and is compacting normally. This is shown by the values of maximum pastvertical stress, a'vm (Table 3, Appendix C), which are very low but generally increase

gradually down the cores. This indicates a normal increase in overburden stress with subbottom depth. OCR (a'vrr/a'vo) values are high (10-85) at the surface, which is in

agreement with values typically reported for marine sediment. However, they decrease rapidly within the upper 50 centimeters and approach a value of 1 below that level (Figure 7). This implies that the seafloor is not an erosional surface.

Compression indices, C's, range from 0.23 to 1.26 and average 0.74. This indicatescthat these Yellow Sea sediments are of medium to high compressibility; most fine-

-3grained sediments have C- values less than 1 and the majority are less than 0.5c

(Mitchell, 1976). Values of the coefficient of consolidation, GV, are generally in the 10

-4 210 cm /sec range. These values are, again, consistent with the fine-grained nature of the sediment, as are the permeabilities. The coefficient of permeability, k, has a mean

7 8value of about 10-10 cm/sec. The permeability of these sediments is thus classified as 'Very low" to "practically impermeable" (Lambe and Whitman, 1969). The same areal trends manifested by the index property data are shown by C , c , and k: values typical

of finer sediment are associated with the deepest part of the study area. Consolidation test results are tabulated and plots of the data are presented in Appendix C.

Table 3 Summary of consolidation test results

core

KC-1A

BC-4

BC-5

BC-6

BC-7

BC-8

BC-9

BC-10

BC-11

symbols:°vo

depth incore(m)

0.08

0.25

0.55

0.04

0.21

0.42

0.02

0.20

0.49

0.02

0.18

0.45

0.04

0.20

0.46

0.02

0.18

0.51

0.02

0.20

0.49

0.02

0.18

0.53

0.02

0.19

0.51

°vo

(kPa)

0.42

1.50

3.42

0.10

0.67

1.41

0.07

0.74

1.82

0.06

0.60

1.53

0.23

1.27

3.05

0.11

1.18

3.45

0.07

0.74

1.82

0.11

1.15

3.52

0.07

1.02

2.88

a'vm

(kPa)

4.0

5.4

10.9

2.3

4.3

9.3

3.0

5.7

8.7

2.6

5.7

5.2

4.2

8.0

22

8.1

15

20

4.7

5.6

4.6

9.3

12

17

2.7

5.4

10.4

a'e

(kPa)

3.6

3.9

7.5

2.2

3.6

7.9

2.9

5.0

6.9

2.5

5.1

3.7

4.0

6.7

19

8.0

14

17

4.6

4.9

2.8

9.2

11

14

2.6

4.4

7.5

;itu effective overburden stress

ess vertical effectivenpressioin index

stress (cf^m- a'vo)

OCR

9.5

3.6

3.2

23

6.4

6.6

43

7.7

4.8

43

9.5

3.4

18

6.3

7.2

74

13

5.8

67

7.6

2.5

85

10

4.8

38

5.3

3.6

vmOCRcv

Cc

0.53

0.44

0.43

0.92

1.26

0.94

1.07

1.00

0.91

1.06

1.19

0.96

0.34

0.29

0.26

0.44

0.30

0.23

1.04

1.12

0.84

0.28

0.37

0.31

0.54

0.55

0.41

: maximum

cv

(cm2/s)

A6x1 0"4A9x1 0"4A8x1 0"4

.6x1 0"4A4x1 0"4

-44x1 0 4

.2x1 0"4

A3x1 0"4A3x1 O"4

.3x1 0"4

3x1 O"4A3x1 0"4

9x1 0"dn3x1 0"dn2x10"°

2x1 0"Jn2x1 0"dn8x1 0"J

.2x1 0"4A3x1 0"4A3x1 0"4

_2x10"^

5x1 0"3o5x1 0~d

.7x1 0"4A7x1 0"4n1x1 0"d

k

(cm/s)

Q3x1 0~eQ4x10"°Q4x1 0"B

ft3x1 0~eQ5x1 0~eQ2x10"°

ft1x10"eQ2x10"°o1x10"°

_5x1 0"b

3x1 0"8Q3x10"°

_4x10^

Q8x10"°Q6x10"°

ft8x10"°P5x1 0"B72x10"'

ft3x10"°Q4x10"°Q4x10"°

_6x10"'

1x10"7~7

1x10"'

_2x10"'

Q4x10"°Q4x10"°

past effective vertica

: overconsolidation ratio ^vrn*: coefficient of consolidation

vo

coefficient of permeability

Strength parametersThe mode of failure and the percentage strain at failure in the CIU triaxial tests are

presented in Table 4 and Appendix D. Plastic deformation occurs, rather than failure along discrete planes, and considerable strain is accumulated before peak strength is reached. The amount of strain shown in Table 4 is relatively high, but not unusual, for fine-grained sediments. Also, these strain percentages imply that cements, which lead to brittle failure, are not present in these sediments.

Table 4

Summary of CIU triaxial test results

Core Failure type % strain at failure ^u/a c ^ c

(avg) n (kPa)

BC-5 plastic 16 0.41 35 3BC-6 plastic 10 0.34 32 2BC-7 plastic 16 0.36 36 4BC-8 plastic 18 0.43 38 0BC-11 plastic 13 0.38 35 4

symbols: Sy : undrained shear strength o^: consolidation stress on triaxial sample prior to shear

§': effective friction angle c' : cohesion intercept in terms of effective stress

The strength-overburden ratio, S./o1 -, which averages about 0.40, is slightlyu chigher than the values of 0.2 to 0.3 that are typically reported for terrestrial soils. We are uncertain, with so few samples, if the difference is significant.

Cohesion, c1 , and internal friction angle, 0', are the basic strength parameters with respect to effective stress. The values shown in Table 4 for c1 are typical for marine muds; the 0' values are, in contrast, generally higher than the norm. For most fine­ grained marine sediments composed of common clay minerals, ClU-derived values of 0' are less than 34° and frequently less than 30° (e.g., see Booth and others, 1985). The reason for the apparently anomalous values cannot be determined without textural and mineralogical analyses. Triaxial test results are tabulated and plots of the data are pre­ sented in Appendix D.

SUMMARY

GeologicalThe surface sediments near and south of the Shandong Peninsula are composed pri­

marily of silts and clays; silts are apparently an important textural component throughout the study area and may be the dominant size class at many sites. The sediments be-

8

come finer toward the deeper part of the study area. No vertical trends are present in the sediment texture, as inferred from the index property data; however, the silt-clay sedi­ ment may only be a veneer over at least part of the region. The surface is depositional: the extremely low shear strengths and high liquidity indices coupled with a lack of evi­ dence for erosion indicate that there is net sediment accumulation throughout most of the study area.

GeotechnicalThe Yellow Sea sediments are very soft and composed of silts and clays of me­

dium to high plasticity (classification: CL and CH). The sediments are of medium to high compressibility and have a permeabilty that ranges from 'Very low" to "practically impermeable". They exhibit overconsolidated behavior, although they trend toward astate of normal consolidation down core. The S /a' values are slightly higher than

those for normally consolidated terrestrial soil. The values of 0', compared to data re­ ported for many other marine sediments, are also slightly higher than the norm.

REFERENCES

American Society for Testing and Materials, 1985,1985 Annual book of ASTM stan­ dards, v. 4.08: Soil and rock; building stones: Philadelphia, ASTM, 1078 p.

Booth, J. S., Sangrey, D. A., and Fugate, J. K., 1985, A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient marine environments: Journal of Sedimentary Petrology, v. 55, p. 29-36.

British Standards Institution, 1975, Standard test for liquid limit cone penetrometer method: London.

Keuhl, S. A., Nittrouer, C. A., DeMaster, D. J., and Curtin, T. B., 1985, A long, square- barrel gravity corer for sedimentological and geochemical investigation of fine­ grained sediments: Marine Geology, v. 62, p. 365-370.

Milliman, J. D., Qin, Y. S., and Butenko, J., 1985, Geohazards in the Yellow Sea and East China Sea: Proceedings Offshore Technology Conference, 17th, p. 73-81.

Mitchell, J. K., 1976, Fundamentals of soil behavior: New York, John Wiley, 422 p.Lambe, T. W., and Whitman, R. V., 1969, Soil mechanics: New York, John Wiley,

553 p.Terzaghi, K., and Peck, R. B., 1967, Soil mechanics in engineering practice: New

York, John Wiley, 729 p.Winters, W. J., 1988, Geotechnical testing of marine sediment: U. S.

Geological Survey Open-File Report 88-36, 52 p.

II8°E

38°N

o

33°N

I25°

N

Figu

re 1

: Y

ello

w S

ea s

tatio

n lo

catio

ns a

nd b

athy

met

ry.

Sea

floo

r bec

omes

sha

l­ lo

wer

to th

e ea

st a

s it

rises

to m

eet t

he K

orea

n pe

nins

ula

(see

inse

t).

S u (kPa)

0

KC50 I 2 0

KC6234

0.5

1.0cc o o

1.5a_ LU o

2.0

2.5

y PREDICT ED

MEASURED

0

KC9I

i i i i i i i i r

Figure 2: Selected vane shear strength profiles. Dashed lines are strength pro­ files predicted for each core by assuming that the sediment is normallyconsolidated (i.e., Su/a'v = 0.24)

11

II8°E

38°N

33°N

I25°

N

Figu

re 3

: W

ater

con

tent

of s

urfa

ce s

edim

ent (

uppe

r * 5

cm

). V

alue

s ca

lcul

ated

on

the

basi

s of

per

cent

dry

wei

ght.

X LU

Q

80 r

70 60 50

< _J Q_

30 20 10 0

INO

RG

ANIC

C

LAYS

OF

cu

HIG

H P

LAS

TIC

ITY

Q

o

CO

HE

SIO

NLE

SS

SO

ILSIN

OR

GAN

IC C

LAYS

OF

MED

IUM

P

LAS

TIC

ITY

V \

INO

RG

ANIC

S

ILTS

OF

HIG

H

CO

MP

RE

SS

IBIL

ITY

INO

RG

ANIC

S

ILTS

O

F M

EDIU

M

CO

MP

RE

SS

IBIL

ITY

II

010

20

30

40

50

60

70

LIQ

UID

LI

MIT

80

90

100

110

Figu

re 4

: Pl

astic

ity c

hart

plot

of a

ll sa

mpl

es.

Not

e sp

read

of d

ata

poin

ts.

LIQUID LIMIT (WL)

o 20 40 60 80 100 120

*p I

UJct: o o

1.5

CLLJQ

2.5

STA.7

/ xr

/r

: l STA.6STA.9 :.

V

: \

\\\

T 7(23m)

60km

- 9(66m)

80km

\ 6(73m)

Figure 5: Liquid limit profiles of sites 6, 7, and 9. Inset shows core locations and water depths. The down-core uniformity is evident in the profiles. The offshore trend toward increasing liquid limit values is evident in the inset. 14

70 r

LTl

60 -

50IN

OR

GAN

IC

CLA

YS

OF

4?

HIG

H P

LAS

TIC

ITY

X LU

Q -

40

^ p

30C

O <x Q^

20 10 n

82

21

X9

.x

'

108

58 /

INO

RG

AN

IC C

LAY

S O

FM

ED

IUM

P

LAS

TIC

ITY

&

C

OH

ES

ION

LES

S

SOIL

S /

\ \S

\ ^ 1

82

s20

8

x^

>

x23

2 /

>x^

-^

1

>x15

8 >

x13

2

,x

X"^

IN

OR

GAN

IC

SIL

TS

OF

/

HIG

H

CO

MP

RE

SS

IBIL

ITY

INO

RG

ANIC

S

ILTS

O

F"

ME

DIU

M

CO

MP

RE

SS

IBIL

ITY

i i

i i

010

2030

4050

60

7080

90

LIQ

UID

LI

MIT

Figu

re 6

: C

hang

e in

pla

stic

ity w

ith d

epth

in c

ore

KC

-4.

Num

eral

s re

fer t

o de

pth

(in c

entim

eter

s) d

own-

core

. To

p of

cor

e (7

cm

) ha

s hi

gh p

last

icity

; bo

t­ to

m o

f cor

e (2

32 c

m)

is n

early

non

plas

tic.

OCR

0

10

'i 20o

UJor8 30

Q_ UJ Q

10 20 30 40 50 60

40

50

60

BC6 BC9

VO

NORMAL CONSOLIDATION

Figure 7: Consolidation state of sediments vs. depth in core. An OCR value of 1 implies that sediment is normally consolidated, values greater than 1 imply a state of overconsolidation.

16

Appendix A

Nomenclature and Symbols

17

Nomenclature and Symbols

Af coefficient of pore pressure response at failure during a triaxialcompression test (change in pore pressure at failure/change indeviate r stress)

ASTM American Society for Testing and Materials BC box core c' cohesion intercept expressed in terms of effective stressCL compression index (change in e/change in log of vertical effective c

stress from consolidation test) CCf corrected field compression index (Schmertmann method)

Cr rebound-recompression index

cy coefficient of consolidation

cv(a'vo) coefficient of consolidation at the in situ effective overburden stress

cv(a'vm) coefficient of consolidation at the maximum past vertical effective

stress cv(avg) average coefficient of consolidation for virgin compression

DELTA u change in pore water pressure (also equals delta PORP)e void ratio (volume voids/volume solids)Gc grain specific gravity

o

Ip disturbance index (Silva method)

I L liquidity index

Ip plasticity index

k coefficient of permeabilityk(cr'vo) coefficient of permeability at the in situ effective overburden stress

k(a') coefficient of permeability at the maximum past vertical effective

stressk(avg) average coefficient of permeability for virgin compression KG Kasten core n porosity (volume voids/total volume)OCR overconsolidation ratio ( CT'vm/cy'vo)

p' normal effective stress acting on a plane inclined at 45° in a triaxial test

q shear stress acting on a plane inclined at 45° in a triaxial test (a -a )/2X +}

S undrained vane shear strength determined on remolded sediment

18

Nomenclature and symbols (cont.)

St sensitivity (suv/srv)

S undrained shear strength

S remolded shear strength (vane measurement)

Suv undrained shear strength (vane measurement)

w natural water content (weight water/weight solids)WL liquid limit

Wp plastic limit

w water content of a triaxial sample during undrained shearo

pt bulk density

a' consolidation stress exerted on a triaxial test sample prior to shear ca'e excess vertical effective stress (cr'vm - CF'VQ)

a'vo in situ effective overburden stress

a' maximum past vertical effective stress

CF',| vertical effective principal stress

cr'3 horizontal effective principal stress

<|>' friction angle in terms of effective stressc|>'(c=0) friction angle in terms of effective stress determined from an individual

triaxial test assuming no cohesion interceptfriction angle in terms of effective stress determined from a number of triaxial tests performed on similar sediment

19

Appendix B

Results of Vane Shear and Index Property Tests

tabular data

profiles

20

TABULAR DATA

21

YS-85-08 Index

Properties

to

to

Core

ID

KG- la

KC-lb

BC-4

KC-4

Dept

h in co

re

(m)

0.0

-0.1

10.

23-0

.27

0.53-0.58

0.75

-0.8

01.00-1.05

0.55

-0.6

00.80-0.85

1.05-1.10

1.30-1.35

1.55

-1.6

01.

80-1

.85

0.0-

0.07

0.19-0.23

0.39-0.44

0.55

-0.6

00.

80-0

.85

1.05-1.10

1.30

-1.3

51.

55-1

.60

1.80-1.85

2.05

-2.1

02.30-2.35

Suv

Srv

(kPa

) (kPa)

_ _ _

- _

- -

- -

2.6

6.2

3.9

6.3

2.8

1.9

5.1

1.4

4.9

1.9

_ _

_ - -

1.2

0.4

0.6

2.3

3.3

0.6

3.7

3.7

6.6

3.3

4.3

st

61 57 47 44 43 551.6

542.

3 55 52

3.6

412.6

42 129

113

103

3.0

102

103 81

5.5

78 81 352.0

37 30

WL 48 44 43 43 43 45 46 41 43 38 39 84 77 84 69 73 66 54 59 37 35 32

WP

23 19 19 19 20 18 19 19 18 19 18 29 32 34 29 29 26 23 25 19 19 21

,<y<

\'°.

25 25 24 24 23 27 27 22 25 19 21 55 45 50 40 44 40 31 34 18 16 11

)

1.51

1.52

1.17

1.04

1.00

1.37

1.29

1.64

1.36

1.16

1.12

1.81

1.80

1.38

1.83

1.68

1.38

1.77

1.65

0.89

1.13

0.82

Gs

2.68

2.67

2.70

2.68

2.65

2.69

2.67

2.65

2.67

2.67

2.68

2.65

2.70

2.69

2.70

2.68

2.71

2.69

2.68

2.68

2.67

2.68

(g/cm3

)

1.64

1.66

1.75

1.77

1.77

1.68

1.68

1.67

1.70

1.80

1.79

1.37

1.42

1.45

1.45

1.45

1.54

1.55

1.53

1.87

1.84

1.93

e

1.63

1.52

1.27

1.18

1.14

1.48

1.44

1.46

1.39

1.09

1.13

3.42

3.05

2.77

2.75

2.76

2.20

2.10

2.17

0.94

0.99

0.80

n

0.62

0.60

0.56

0.54

0.53

0.60

0.59

0.59

0.58

0.52

0.53

0.77

0.75

0.73

0.73

0.73

0.69

0.68

0.68

0.48

0.50

0.45

Comments

CRSC

CRSC

CRSC

CRSC

CRSC

CRSC

Symb

ols

are

explained in Appendix A.

YS-85-08 Index Properties (continued)

to CJ

Core

ID

BC-5

KC-5

BC-6

KG- 6

Depth

in co

re

(m)

0.00-0.05

0.18-0.22

0.47-0.54

0.55-0.60

0.80-0.85

1.05-1.10

1.30-1.35

1.55-1.60

1.80-1.85

0.0-0.04

0.16-0.20

0.43-0.51

0.55-0.60

0.80-0.85

1.05-1.10

1.30

-1.3

51.55-1.60

1.80

-1.8

52.05-2.10

2.30-2.35

2.55

-2.6

02.80-2.85

Suv

Srv

(kPa)

(kPa)

,.m

- -

~

0.4

1.7

0.4

0.7

0.2

0.7

2.1 _

_- -

-

_ _

- -

- 1.9

0.7

1.3

2.3

2.2

3.2

3.8

1.0

4.0

1.2

St

w 124 98 104

104 99 95

3.5

98 92 98 144

114

111

111

106

114

2.7

110

102

105 99 102

3.8

963.

3 99

WL 84 82 81 80 90 81 80 84 89 101 86 83 86 86 93 93 91 91 93 93 91 102

WP 32 31 31 34 29 34 32 30 30 35 31 32 31 34 36 31 32 34 34 32 34 31

(%)

52 51 50 46 61 47 48 54 59 66 55 51 55 52 57 62 59 57 59 61 57 71

IL 1.77

1.31

1.46

1.52

1.15

1.30

1.38

1.15

1.15

1.66

1.51

1.55

1.45

1.38

1.37

1.28

1.19

1.25

1.10

1.15

1.09

0.95

Gs

2.71

2.71

2.70

2.67

2.68

2.70

2.67

2.69

2.66

2.68

2.70

2.70

2.65

2.70

2.71

2.73

2.66

2.72

2.72

2.70

2.66

2.69

(g/cm3

)

1.39

1.47

1.45

1.44

1.46

1.48

1.46

1.49

1.46

1.35

1.42

1.43

1.42

1.44

1.42

1.43

1.45

1.45

1.47

1.45

1.47

1.46

e 3.36

2.66

2.81

2.78

2.65

2.57

2.62

2.47

2.61

3.86

3.08

3.00

2.94

2.86

3.09

3.00

2.71

2.86

2.69

2.75

2.55

2.66

n 0.77

0.73

0.74

0.74

0.73

0.72

0.72

0.71

0.72

0.79

0.75

0.75

0.75

0.74

0.76

0.75

0.73

0.74

0.73

0.73

0.72

0.73

Comm

ents

CRSC

CRSC

CRSC

CRSC

CRSC

CRSC

YS-85-08 Index

Prop

erti

es (continued)

ro

Core

ID

BC-7

KC-7a

KC-7

b

Dept

h in co

re

(m)

0.0-

0.06

0.18

-0.2

20.

44-0

.48

0.55

-0.6

00.

80-0

.85

1.05

-1.1

01.30-1.35

1.55

-1.6

0

0.55-0.60

0.80

-0.8

51.05-1.10

1.30

-1.3

51.

55-1

.60

1.80

-1.8

52.

05-2

.10

2.30

-2.3

52.

55-2

.60

2.80-2.85

Suv

srv

(kPa)

(kPa)

_ _

- - -

_ _

-0.6

1.6

3.6

3.9

4.1

4.0

0.9

2.7

4.3

2.5

4.4

2.1

5.9

5.1

St

w 57 46 40 43 41 43 41 41 44 424.

4 40 40 36 35 34 32 32 36

WL 45 40 42 40 40 38 40 38 40 39 39 39 38 38 37 37 37 38

WP

22 20 21 21 21 21 22 22 21 20 22 21 21 21 22 21 22 22

(%)

23 20 21 19 19 17 18 16 19 19 17 18 17 17 15 16 15 16

IL

1.52

1.30

0.90

1.16

1.05

1.29

1.05

1.19

1.21

1.16

1.06

0.93

0.88

0.82

0.80

0.69

0.67

0.88

Gs

2.70

2.69

2.71

2.66

2.69

2.65

2.68

2.68

2.69

2.72

2.70

2.68

2.66

2.69

2.70

2.69

2.68

2.69

(g/c

m3

1.67

1.76

1.82

1.77

1.80

1.77

1.80

1.80

1.77

1.80

1.82

1.81

1.85

1.87

1.89

1.91

1.90

1.86

e

1.54

1.24

1.08

1.14

1.10

1.14

1.10

1.10

1.18

1.14

1.08

1.07

0.96

0.94

0.92

0.86

0.86

0.97

n

0.61

0.55

0.52

0.53

0.52

0.53

0.52

0.52

0.54

0.53

0.52

0.52

0.49

0.48

0.48

0.46

0.46

0.49

Comments

CRSC

CRSC

CRSC

YS-8

5-08

Index

Properties (continued)

to

ui

Core

ID

BC-8

KC-8

BC-9

KG- 9

Depth

in co

re

(m)

0.0-

0.04

0.16-0.20

0.49-0.54

0.55

-0.6

00.80-0.85

1.05-1.10

1.30

-1.3

51.55-1.60

1.80

-1.8

52.

05-2

.10

2.30-2.35

2.55

-2.6

02.80-2.85

0.0-

0.06

0.18

-0.2

20.

47-0

.56

0.55

-0.6

00.

80-0

.85

1.05-1.10

1.30

-1.3

51.

55-1

.60

1.80-1.85

uv

rv

(kPa

) (kPa)

_ __

- - -

_ _

2.2

2.5

1.4

2.1

0.9

3.3

5.0

0.8

4.0

3.6 _

_- -

-

_ _

- - -

- -

2.0

2.7

St

w 62 46 42 45 42 46 47 47 46 456.3

45 43 45 123

107

106 86 95 108 83 98 94

WL 46 47 40 40 39 40 41 42 40 42 42 39 43 90 81 78 77 88 85 84 82 84

WP

23 22 23 22 22 22 19 22 22 22 22 22 21 32 32 31 29 30 31 30 31 31

(%)

23 25 17 18 17 18 22 20 18 20 20 17 22 58 49 47 48 58 54 54 51 53

IL

1.68

0.96

1.12

1.28

1.18

1.33

1.24

1.25

1.33

1.15

1.15

1.24

1.09

1.56

1.53

1.60

1.19

1.12

1.43

0.98

1.31

1.19

Gs

2.68

2.68

2.69

2.70

2.69

2.69

2.68

2.69

2.68

2.70

2.70

2.69

2.66

2.65

2.68

2.67

2.66

2.70

2.65

2.70

2.68

2.66

(g/cm3

)

1.63

1.75

1.79

1.77

1.79

1.76

1.74

1.75

1.75

1.77

1.77

1.78

1.76

1.39

1.43

1.44

1.50

1.48

1.43

1.52

1.46

1.47

e

1.66

1.23

1.13

1.22

1.13

1.24

1.26

1.26

1.23

1.22

1.22

1.16

1.20

3.26

2.87

2.83

2.29

2.57

2.86

2.24

2.63

2.50

n

0.62

0.55

0.53

0.55

0.53

0.55

0.56

0.56

0.55

0.55

0.55

0.54

0.54

0.77

0.74

0.74

0.70

0.72

0.74

0.69

0.72

0.71

Comm

ents

CRSC

CRSC

CRSC

CRSC

CRSC

CRSC

YS-8

5-08

Index

Prop

erti

es (c

ontinued)

to

Core ID

Depth

Suv

Srv

in co

re

(m)

(kPa

) (k

Pa)

BC-10

KG- 10

BC-11

KC-11

0.0-0.04

0.16

-0.2

00.50-0.56

0.55

-0.6

00.80-0.85

1.05

-1.1

01.30-1.35

1.55

-1.6

0 1.9

1.80

-1.8

5 3.8

2.05

-2.1

0 3.

2 0.6

0.0-

0.04

0.17-0.21

0.48-0.54

0.55-0.60

1.7

0.80

-0.8

5 0.5

1.05-1.10

5.2

St

w 53 54 45 45 41 57 43 38 365.3

42 89 57 46 62 51 46

(%)

40 41 42 46 43 53 40 40 39 39 56 45 47 51 43 45

(%)

24 22 21 22 21 21 21 22 22 22 24 20 22 20 19 18

1P 16 19 21 24 22 32 19 18 17 17 32 25 25 31 24 27

lL

1.73

1.68

1.14

0.96

0.91

1.12

1.16

0.89

0.82

1.18

2.03

1.48

0.96

1.34

1.33

1.05

Gs

2.69

2.68

2.70

2.67

2.67

2.71

2.66

2.69

2.66

2.70

2.68

2.68

2.68

2.68

2.68

2.65

(g/cm3)

1.70

1.69

1.77

1.76

1.80

1.67

1.77

1.84

1.85

1.80

1.50

1.66

1.69

1.63

1.71

1.74

e

1.43

1.45

1.22

1.20

1.09

1.54

1.14

1.02

0.96

1.13

2.39

1.53

1.45

1.66

1.37

1.22

n

0.59

0.59

0.55

0.55

0.52

0.61

0.53

0.51

0.49

0.53

0.70

0.60

0.59

0.62

0.58

0.55

Comments

CRSC

CRSC

CRSC

CRSC

CRSC

CRSC

PROFILES Vane shear strength

27

VANE SHEAR STRENGTH (kPa)

.25

.5

.75

0)

ai

~ 1.25

1.5

1.75

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC IB

28

VANE SHEAR STRENGTH (kPa)

25

.5

.75

a

8 i.25

1.5

1.75

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 4

29

VANE SHEAR STRENGTH (kPa)

.25

.5

.75

01

~ 1.25

1.5

1 75* ' J

QL LUa

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 5

30

VANE SHEAR STRENGTH (Wo)

.25

.5

.75

0)

I* 1.25

1.5

1.75

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 6

31

VANE SHEAR STRENGTH (kPo)

.25

.5

.75

~ 1.25

1.5

1.75

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 7A

32

VANE SHEAR STRENGTH (kPa)

.25

.5

.75

CB

01

1.25

1.5

1.75

2.25

2.5

2.75

STRENGTH PROFILEs YS-85-08 KC 7B

33

VANE SHEAR STRENGTH (kPo)

.25

.5

.75

01

01

3 1.25

1.5

1 751. / J

OuLU 0a 2

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 8

34

VANE SHEAR STRENGTH (kPa)

.25

.5

.75

rt

1.25

1.5

1 75 * »**

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 9

VANE SHEAR STRENGTH (kPo)

0

.25

.5

.75

* 1. 25

1.5

g 1.75

I 2

2.25

2.5

2.75

STRENGTH PROFILE: YS-85-08 KC 10

36

ro

roro

^

i

ro

DEPT

H BE

LOW

MUDLINE

(meters)

roro

iiii

i

OJ -J

rom C

O m CO

OD i OD ^:

O

m ZL CD

cn cn

PROFILESLiquid limitPlastic limit

Water content

38

X- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 20 40 60 80 100 120 140

-.25

-.5

-.75

03 -1C. 03

03

-1.25LU Z H-1

| -1.5

o

Q.

^ -2

-2.25

-2.5

-2.75

-3

I I I I I 1 I 1 I i I

INDEX PROPERTY PROFILE: YS-B5-OB KC 1A

39

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0

-.25

-.5 -

-.75

0 20 40 60 80 100 120 140

-5J -1C. CD

CD

~-1.25LU

§ -1.5

g-1.75ma. LU aLU _2

-2.25

-2.5

-2.75

-3

1 1 I 1 1 J 1 1 I I 1 I I

i

INDEX PROPERTY PROFILE: YS-85-08 KC IB

40

*- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

COc_ cucu

LLJI-H

_J aID

0

LLJen

a. LLJ o

0 j

-.25

-.5

-.75

-1

-1.25

-1.5

-1.75

-2

-2.25

-2.5

-2.75

) 20 40 60 80 100 120 1401 i i i i i i i i i 1 i i i

\ /^\ (X /*

1 6 /M

M

«

" *r ft imf»w r^t^^r^^^«r\/ r^^j^^*«r I ^_ % ** * ^*f-» « * r% j-% INDEX PROPERTY PROFILE: YS-85-08 BC 4

41

x- WATER CONTENT o LIQUID LIMIT + ._. PLASTIC LIMIT

0 20 40 60 80 100 120 140

-.25

-.5

-.75

"ra -1 c.OJ

01

ill-1.25 -

g -1.5

g-1.75

a.UJa

-2.25

-2.5

-2.75

-3

I I i 1 I III I T

INDEX PROPERTY PROFILE: YS-85-08 KC 4

42

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 20 40 60 80 100 120 140

03C- CD

O)

LU

-Ja

oLU CD

n:i a.UJen

U !

-.25

-.5

-.75

-1

-1.25

-1.5

-1.75

-2

-2.25

-2.5

-2.75

1 1 I I ! 1 I J , J 1 i 1^,1 I

(D ^^*

\ \

\ \

0 *

-

-

-

-

-

-

-

-

-

INDEX PROPERTY PROFILE: YS-B5-08 BC 5

43

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

00

-.25

-.5

-.75 -

20 40 60 80 100 120 140

In -1c-03

-M CDS . -~ "1.25UJ

a 1.5

I -1-751C

Q. LLJ OLLJ «2

-2.25

-2.5

-2.75

O

0 *

INDEX PROPERTY PROFILE: YS-B5-08 KC 5

44

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 ]

-.25

-.5

-.75

*C/3 ~1 C. CD

CD

~-1.25LU1 J1 '1

1 ~ 1>5

3C

gj ~ 1>753T

D. UJ Oa c

-2.25

-2.5

-2.75

I 20 40 60 80 100 120 1401 1 *X* * ' ^ ^ ' Jf\ * * ' ^J^i

" 1 'f /1 6 i

-

-

-

-

-

-

-

-

INDEX PROPERTY PROFILE: YS-85-08 BC 6

45

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0

-.25

-.5

-.75

"w -1CD

0 20

UJ-1.25

-1.5 -

S-1.75reCL UJauj -2

-2.25 -

-2.5

-2.75 -

40 60 80 100 120 140I I I I I I I I T r i i r

INDEX PROPERTY PROFILE: YS-85-08 KC 6

46

X- WATER CONTENT 0 LIQUID LIMIT +_._. PLASTIC LIMIT

0

-.25

-.5

) 20 40 60 80 100 120 140i i i .1 ' J. l j& ' l ' l J S l l l

r Q /R

,y

03C. (D

-.75

-1

03

^-1.25LJJ

3 -1.5s:

-1.75

a. LU a -2

3

-2.25

-2.5

-2.75i

INDEX PROPERTY PROFILE: YS-85-08 BC 7

47

X- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

-.25

20 40 60 80 100 120 140i I I 1 I I 1 I I I I T

-.5

-.75

C. CU -»-> CD S . rtr.~ -1.25LU

-1.5

I

a. LU a -2

-2.25

-2.5

-2.75

-3INDEX PROPERTY PROFILE: YS-85-OB KC 7A

48

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 20 40 60 80 100 120 140u

-.25

-.5

-.75

-5J -1C. CD

CD

-1.25LU| 1r

I ~ 1 - 5o en 1 -'°HZ

0- LU Oa <-

-2.25

-2.5

-2.75

-q

i i i i i i i i i i i i i r

-

-

-

-

-

-

-

tiI/jIi

!?di

]

J 1: (1

; 0

111 fcir»f-\/ i-ir^^^r^r r^Ti/ i-ii-^^^r-Ti r-. \/« r*r* *\f+ iff* »r*INDEX PROPERTY PROFILE: YS-85-08 KG 78

49

*- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

A 0 20 40 60 SO 100 120 140g j S

-.25

-.5

-.75

c_CD -J-) CD

LU

3 -1.5

-1.75

Q.UJa

-2.25

-2.5

-2.75

<J /*

INDEX PROPERTY PROFILE: YS-85-08 BC 8

50

x~ WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 0 20 40 60 80

-.5

-.75

"w -1C_

(D

~ -1.25UJ

h-1

| -1-5

1 -1-7531

Q. UJ Oli I o

-2.25

-2.5

-2.75

-3

-.25 (-

f

100 120 140

P

6 *

IP

INDEX PROPERTY PROFILE: YS-85-08 KC 8

51

*- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

enc.CD

CD

~

LU

-J CUID

2: CD

LU CD

n:Q. UJa

o c) 20 40 60 80 100 120 140,,,,,,,, ,,,,,

/ X-.25 (- 4 if

j /

-.5

-.75

-1

-1.25

-1.5

-1.75

-2

6 i

M

-2.25

-2.5

-2.75

-3INDEX PROPERTY PROFILE: YS-B5-08 BC 9

52

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

20 40 60 80 100 120 140

COc. o>QJ

*S

LU

a

aLJJ CQ

reh-a.LUa

u

-.25 '

-.5

-.75

-i

-1.25

-1.5

-1.75

-2

-

-

-

"

(X ^K

\ Y/ \ i /*' /xyMi N

6 >

1 / + i i

M

-2.25

-2.5

-2.75

-3 INDEX PROPERTY PROFILE: YS-B5-08 KC 9

53

X- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

0 <

-.25

) 20 40 60 80 100 120 140r »i^l i*i i i r r i^r i i

If i r; i /

-.5 * .. i/-.75 \-

I

In -1c.CD

CD

--1.25yj i ,it i -jEi -1.5 2:

0

^

«

-

^ -1.75 f-1C

£UJ O C3 ^~

-2.25 --PR L

-2.75

INDEX PROPERTY PROFILE YS-B5-OB BC 10

54

x- WATER CONTENT o LIQUID LIMIT +_._. PLASTIC LIMIT

COc.CD

CDJSLU« «i "i J

ZD

O

LLJCO

31 H- Q. LUa

o c,'.

1 20 40 60 80 100 120 140i i 1 ! i 1 1 i 1 ! i t i i

-.25 (-

-.5

-.75

-1

-1.25

-1.5

-1.75

~P

w

*

»

»

.

-

-

-

/

I\\\,

//

//

¥ #/i\

-2.25

-2.5

-2.75

-3INDEX PROPERTY PROFILE: YS-85-08 KC 10

55

x- HATER CONTENT o LIQUID LIMIT + . .PLASTIC LIMIT

0

-.25

-.5

-.75

In -1c_CD

0 20 40 60 80 100 120 140

CD

LU

-1.25

§ -1.5

£-1.75

a -2

-2.25

-2.5

-2.75

I I ! I

INDEX PROPERTY PROFILE: YS-85-08 BC 11

56

*- WATER CONTENT 0 LIQUID LIMIT +_._. PLASTIC LIMIT

00 20 40 60 80 100 120 140

I I I I I I I l I I I

-.25 I-

-.5 -

-.75

-w -1<D

-»-> 03

--1.25LLJ

I

fk

-1.5»

-1.75

d. UJ Q

t--2.25

-2.5

-2.75

i\--3 L

INDEX PROPERTY PROFILE: YS-85-08 KC 11

57

PROFILESWater contentBulk density

Porosity Grain specific gravity

58

WATER CONTENT (%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.9

-1 -

I H Q. UJ Q

-3 u

-1

-2

-3

i i r 4- T i i r

YS-85-08 KG 1A

-1

Q.UJQ

-3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

i r.8 2.6 2.65 2.7 2.75 2.8

I i 0 i 4- r i i

59

-1

IE H Q.UJQ -2

-3

WATER CONTENT 1%) BULK DENSITY

30 60 90 120 150 1.3 1.5 1.7 1.9

-1

-3

I I I I i i

YS-85-08 KG IB

.4

IEH CL 111 Q

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8-I 0

-2

-3

i

60

WATER CONTENT (%J

0 30 60 90 120 150 1.3 0 i i i i r-* i 0

-1

r

Q. UJa

-3

BULK DENSITY

1.5 1.7 1.9 i r r i T i i

-1

-2

-3

YS-85-08 BC 4

.4

a.UJa -2

-3

POROSITY

5 .6 .7

T I

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8-, 0

-3

i i

61

WATER CONTENT 1%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.90 i i i i i i 0

-1

Q.LU Q -2

-3 L

ill rr i i

YS-85-08 KG 4

.4

-1

I H Q. UJ Q -2

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8T I I I 0

-2

-3

i i i i

62

WATER CONTENT 1%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.9 0 i i i i :PF i 0I I I

-1

xH 0. UJa -2

-3

-1

-2

-3

i i i i i i

YS-85-08 BC 5

.4

4

X H CL UJa -2

-3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8 i i s* T 0

-1

-2

-3

i i

63

WATER CONTENT 1%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.9

-1

Q, LU Q -2

-3

-1

i i \ \ i

YS-85-08 KG 5

.4

-1

Q, UJ Q -2

-3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.81 I I 0

-1

-2

-3

i I i i

64

WATER CONTENT (%)

0 30 60 90 120 150 1.3

BULK DENSITY

1.5 1.7 1.9u

s

XCL111Q -2

3

1 ' ' J--"^

_ 4

_

-3

TV. i r 1 i r 1 i

. ^-

_

-

YS-85-08 BC 6

.4

CL 111 Q -2

-3

POROSITY SPECIFIC GRAVITY

5 .6 .7 .8 2.6 2.65 2.7 2.75 2.8 i ~ r--.~ -^ 0

-1

-2

65

WATER CONTENT (%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.9

Q. UJ Q -2

~3

1 1 I I I ! I

-2

-3

YS-85-08 KG 6

.4

-1

Q. UJ a

-3 L

POROSITY

5 .6 .7

i l r

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8 -, 0

-1

-2

i r i i

66

WATER CONTENT (%)

30 60 90 120

H

-2

150 1.3- o r-

BULK DENSITY

1.5 1.7 1.9

JIT

-2

j

L

YS-85-OB BC 7

.4

POROSITY

5 .6 .7

SPECIFIC GRAVITY

,8 2.6 2.65 2.7 2.75 2.8

1 0

Q. UJ Q

r i

67

WATER CONTENT (%)

0 30 60 90 120 150 1.3 0 I | | | i I 0 r-

T. H Q. lit Q _ O

-3

BULK DENSITY

1.5 1.7 1.9i r r r r

-2

-3

YS-85-OB KC 7A

.4

-1

T.

0. lit Q

-3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.B 0

-1

-3

68

WATER CONTENT (%) BULK DENSITY

4 _

xH CL UJ Q

-2 -

-3 U

30 60 90 120 150 1.3 1.5 1.7 1.9-1 i I I I 0

-2

ITI i i i i

YS-85-08 KG 7B

POROSITY SPECIFIC GRAVITY

.4

Q. UJ Q

5 .6 .7 .8 2.6 2.65 2.7 2.75 2.8 I 0 III

-2

I I I

69

x h-Q. UJ Q -2

WATER CONTENT 1%)

30 60 90 120 150 1.3 i i i 0

BULK DENSITY

1.5 1.7 1.9i I r i i

-2

-3

Q.HI

YS-85-08 BC 8

.4

POROSITY SPECIFIC GRAVITY

5 .6 .7 .8 2.6 2.65 2.7 2.75 2.81

-3 -3 L

70

WATER CONTENT 1%) BULK DENSITY

0 30 60 90 120 150 1.3 1.5 1.7 1.9

X HaUJ Q ~2

-3

i i i i i r r i r i i

-1

-2

YS-85-08 KG 8

.4

-1

Q. UJa

-3

POROSITY

5 .6 .7i r

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75-1 0 ,

-1

-2

2.BI T

71

WATER CONTENT 1%J

30 60 90 120 150 1.3

BULK DENSITY

1.5 1.7 1.9i r i i i i i i

Q. LU Q ~2

-3

-i

-2

YS-85-08 BC 9

.4

-1

I I- Q. LU Q -2

~3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.81 jr ~\ 0 I ^ | | |

-i

-3

72

-1 -

|E£UJQ -2

-3

WATER CONTENT (%)

30 60 90 120 150 1.3

BULK DENSITY

1.5 1.7 1.9

-i -

YS-85-08 KG 9

.4

-1

IHQ. UJ Q

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8 -I 0

-1

-3

73

WATER CONTENT (%J

0 30 60 90 120 150 1.30 i i *-i i i i o

Q. UJ Q

BULK DENSITY

1.5 1.7 1.9

-1

-2

-3

i i i I I I

YS-85-08 BC 10

Q. UJ Q -2

-3

POROSITY

5 .6 .7T

.8

SPECIFIC GRAVITY

2.6 2.65 2.7 2.75 2.8

-2

74

WATER CONTENT 1%)

0 30 60 90 120 150 1.30 j , , , , o r

im D -2

-3

BULK DENSITY

1.5 1.7 1.9 I | | | i |

V

1 -

2 -

L

YS-85-08 KG 10

.4

I H- D. HI Q -2

-3

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.B i 0 i i i i i

-1

-2

-3 l-

75

-1 -

IQ. UJ Q

-3

WATER CONTENT (%) BULK DENSITY

30 60 90 120 150 1.3 1.5 1.7 1.9 I i 0 i i 1= i r

-2

-3

i r T

Q.UJ Q

YS-85-08 BC 11

.4

POROSITY

5 .6 .7

SPECIFIC GRAVITY

.8 2.6 2.65 2.7 2.75 2.8

"* 1 -1

76

-1

Q. UJ Q

-3

WATER CONTENT (%)

30 60 90 120 150 1.3

BULK DENSITY

1.5 1.7 1.9| -r i I i i

-1

-a

-3

YS-85-08 KG 11

POROSITY SPECIFIC GRAVITY

.4 .5 .6 .7 ,B 2.6 2.65 2.7 2.75 2.B0

_-l

1

X

Q.UJ

~3

.

J -1

-

-

1(11

^

-

-

77

Appendix C

Results of Constant-Rate-of-Strain Consolidation Tests

tabular data unedited test plots

78

TABULAR DATA

79

YS-85-08 Consolidation Te

st Results

to o

Core ID

KC-la

BC-4

BC-5

BC-6

BC-7

BC-8

BC-9

BC-1

0

BC-11

Test

Dept

h No

. in

core

(m)

CR03

7 0.075

CR047

0.25

CR041

0.55

CR038

0.035

CR049

0.21

CR042

0.42

CR03

3 0.02

CR053

0.20

CR029

0.49

CR056

0.49

CR03

9 0.02

CR05

0 0.18

CR043

0.45

CR03

4 0.04

CR054

0.20

CR030

0.46

CR057

0.46

CR040

0.02

CR04

8 0.18

CR04

4 0.51

CR035

0.02

CR055

0.20

5CR031

0.49

CR05

8 0.

51

CR03

6 0.02

CR05

1 0.18

CR032

0.53

CR04

5 0.015

CR052

0.19

CR04

6 0.51

CR059

0.51

w 64 63 56 158

140

110

139

111

109

111

156

127

120 64 51 44 44 60 49 44 129

120

110

107 59 56 50 87 64 58 57

°'vo

(kPa)

0.42

1.50

3.42

0.10

0.67

1.41

0.07

0.74

1.82

1.86

0.06

0.60

1.53

0.23

1.27

3.05

3.08

0.11

1.18

3.45

0.07

0.74

1.82

1.90

0.11

1.15

3.52

0.07

1.02

2.88

2.91

°'vm

(kPa)

4.0

5.4

10.9 2.3

4.3

9.3

3.0

5.7

8.7

3.5

2.6

5.7

5.2

4.2

8.0

22 7.1

8.1

15 20 4.7

5.6

4.6

3.7

9.3

12 17 2.7

5.4

10.4 4.3

o'e

(kPa)

3.6

3.9

7.5

2.2

3.6

7.9

2.9

5.0

6.9

1.6

2.5

5.1

3.7

4.0

6.7

19 4.0

8.0

14 17 4.6

4.9

2.8

1.8

9.2

11 14 2.6

4.4

7.5

1.4

OCR

9.5

3.6

3.2

23 6.4

6.6

43 7.7

4.8

1.9

43 9.5

3.4

18 6.3

7.2

2.3

74 13 5.8

67 7.6

2.5

1.9

85 10 4.8

38 5.3

3.6

1.5

Cc

0.53

0.44

0.43

0.91

1.26

0.94

1.07

1.00

0.91

0.78

1.06

1.19

0.96

0.34

0.29

0.26

0.21

0.44

0.30

0.23

1.04

1.12

0.84

0.66

0.28

0.37

0.31

0.54

0.55

0.41

0.35

Ccf

0.57

0.47

0.46

0.92

1.30

1.11

1.14

1.08

1.04

0.84

1.08

1.23

1.05

0.35

0.31

0.29

0.23

0.65

0.35

0.26

1.13

1.23

0.97

0.74

0.33

0.45

0.33

0.58

0.61

0.45

0.38

Cr

0.00

40.006

0.005

_ 0.08 - 0.04

0.09

0.03

0.09

0.006

0.06 - _ 0.01

_ - _0.002

-

0.005

0.06

0.01

0.02

0.01

0.004

0.02

0.01

0.01

0.02

(cm2/s)

IxlO"3

IxlO"3

_7xlO~3

3xlO~3

_4xlO~3

IxlO"3

5x1 0~

4

_7xlO~3

3xlO~2

3X10"3

2X10"3

_9xlO~3

2xlO~2

_ _4xlO~3

4xlO~4

_2xlO~2

2xlO~2

_IxlO"2

IxlO"3

3xlO~4

) cv(o'vm)

(cm2/s

)

IxlO"3

7xlO"4

8x1 0~

4

2xlO~3

IxlO"3

5xlO~4

4xlO~4

7xlO~4

3xlO~4

3xlO~4

2xlO~3

3xlO~3

IxlO"2

3xlO~3

1X10"3

1X10"3

6X10"4

2xlO~3

2xlO~3

5xlO~3

5xlO"4

9xlO~3

2xlO~3

2xlO"4

7xlO~3

3xlO~3

5xlO~3

IxlO"3

5xlO~3

4xlO~4

6xlO~4

cy(ave)

(cm2/s

)

6xlO~4

9xlO~4

8xlO~4

6xlO~4

4xlO~4

4xlO~4

2xlO~4

3xlO~4

3xlO~4

2xlO~4

3xlO"4

3xlO"4

3xlO~4

9xlO~3

3X10~3

2X10~3

6X10"4

2xlO~3

2xlO~3

8xlO~3

2xlO~4

3xlO~4

3xlO~4

2xlO"4

2xlO~2

5xlO~3

5xlO~3

7xlO~4

7xlO"4

IxlO"3

3xlO~4

k(a'

vo)

(cm/s)

IxlO

"6

6xlO~7

_9xlO~6

IxlO"6

_3xlO~6

5xlO~7

3xlO~7

_ _4xlO~6

_9X10"6

3X10~7

4X10~7

_2xlO~6

4xlO~6

_ _4xlO~6

3xlO

~7

_5xlO~6

4xlO~6

_IxlO"5

4xlO

"7

7xlO~7

k(a'

vm)

(cm/

s)

7xlO"7

5xlO~7

2xlO~7

IxlO"6

lxlO

~6

3xlO

~7

5xlO~7

7xlO~7

2xlO"7

2xlO

~7

7xlO

~6

6xlO~6

5xlO~6

3xlO~5

4X10~7

2X10~7

2X10"7

IxlO

"6

4xlO~7

8xlO~7

6xlO~7

IxlO"5

5xlO~6

2xlO~7

2xlO

~6

IxlO"6

IxlO"6

IxlO"6

2xlO~6

2xlO

~7

2xlO~7

k(ave)

(cm/

s)

3xlO~8

4xlO~8

4xlO~8

3xlO

~8

5xlO~8

2xlO~8

IxlO"8

2xlO

~8

IxlO

"8

IxlO"8

5xlO~8

3x10 8

3xlO~8

4xlO~7

8X10"8

6X1 0~

82X10~8

8xlO~8

5xlO~8

2xlO

~7

3xlO

~8

4xlO~8

4xlO~8

2xlO~8

6xlO~7

IxlO"7

IxlO

"7

2xlO~7

4xlO~8

4xlO~8

IxlO

"8

i.

0.22

0.23

0.28

0.31

0.23

0.27

0.21

0.26

0.29

0.22

0.26

0.15

0.19

0.23

0.24

0.28

0.30

0.27

0.29

0.32

0.25

0.28

0.26

0.26

0.27

0.27

0.27

0.22

0.30

0.25

0.25

Comments

Remolded

Remolded

Remolded

SI.

Questionable

Remolded

Symbols

are

explained in

Appendix A.

TEST PLOTS

81

5 r

4.5 -

4 -

3.5

a» i o

1.5

.5

0.1

Q vs log p' fors CR037S85Q1YS-85-08

CORE KC-laQ.065-Q.085 m

10VERTICAL

100 STRESS <kPa>

1000

82

00

Tl

i-*

to

Ql

o

CO

8

I!-

aI

!- s

EXCE

SS P

ORE

PRES

SURE

(k

Pa) i

o

a

8

c S t

P

«8HK

?B

<

50 r

40 -

30 -

20 -

1 10cn

o

0

3-10 <

LiJ

-20 -

-30 -

-40 -

-50 L

du/Sv fort CR037S8501YS-85-08

CORE KC-la0.065-0.085 m

.1 I 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

84

COEFFICIENT

OF C

ONSO

LIDA

TION

(c«A

2/9Q

c)

O)

00

Ul

8

e^ «

s

1PE

RMEA

BILI

TY

(cm

/soc

)

Rf**^

f**^

a ro

i r nil iii

00

8

p

.8

re vs log p' for: CRO4738501YS-85-08

CORE KC-la0.24-0.26 n

4.5 -

4 -

3.5

2.5

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

87

250 r

u vs log p' for: CR047S8501YS-85-08

CORE KC-la0.24-0.26 n

200 -

150

15100 hCL

50

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

88

50 r

du/Sv for: CR047S8501YS-B5-08CORE KC-la0.24-0.26 n

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

89

COEF

FICI

ENT OF

CONSOLIDATION (cnf 2/

sec)

IT G>

O 7 ruO m

VD O

10EO r

10E-1 -

10E-2 -

10E-3 -

310E-4 f-

IO

10E-6 -

10E-7

10E-8

10E-9

iOE-10.1

k vs log p' for: CR047S8501YS-85-08CORE KC-ia0.24-0.26 n

1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

91

5 r

4.5

4 -

3.5 -

§

1.5

.5

0.1

e vs loq p' fon CR041S8501YS-85-08

CORE KC-la0.54-0.56 m

i 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

92

250

u vs log p' for:CR041S8501YS-85-08

CORE KC-la0.54-0.56 m

200

150

100

50

H0

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPo)

1000

93

50 r

40 -

30 -

20 -

I toen

CJ

-20 -

-30 -

-40 -

-50 L

du/Sv for: CR041S8501YS-85-08

CORE KC-la0.54-0.56 m

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPc)

1000

94

COEFFICIENT

OF C

ONSO

LIDA

TION

(c

mA2/

9Qc)

HfR

O T ro§

vi)

enS m 1 CO CO

O O O

IOEO

k vs loq p' for:CR04lS850lYS-85-08CORE KC-la0.54-0.56 m

10E-1

iOE-2

IOE-3

IOE-4

o**^

t iOE-5

CD

IOE-6

IOE-7

IOE-8

IOE-9

IOE-10.1 I 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

96

5 r

e vs log p' fori CR038S8504YS-85-08CORE BC-4

0.025-0.045 m

4.5

3.5

o » i

i 2.5

1.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

97

250

u vs log p' fonCR038S85Q4 YS-85-08 CORE BC-4

200

150

100

50LLl18

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

98

50 r

40 -

30 -

20 -

10 -

du/Sv for: CR038S8504YS-85-08

COREBC-4a025-a045 m

CO

_J cs

-20 -

-30 -

-40 -

-50 L

i 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

99

ffl

COEF

FICI

ENT

OF C

ONSO

LIDA

TION

(cnf 2/

SQc)

Ro T en

Ro T C

O

o To

m

o

m

o

O

o

o3 m

o

oo

o

MB

o CQ

^

m

co CO

C

O I

CJI

aO 88

o

o

10EO

k vs loq p' for: CR038S8504YS-85-08CORE BC-4

0.025-0.045 M

10E-1

10E-2

1GE-3

IOE-4

10E-5

QD«< LU2:a:

IOE-6

IGE-7

10E-8

IOE-9

10E-10.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

101

4 r

e vs log p' fors CR049S8504YS-85-08CORE BC-40.20-0.22m

3.5 -

3 -

2.5

1.5

.5

.1 1 10 100

VERTICAL EFFECTIVE STRESS <kW>

1000

102

250 r

u vs log p' for«CRQ49S8504YS-85-08CORE BC-4

0.20-0.22 m

200 -

150 -

100

50

en en

-50

-100

-ISO

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

103

so

40 -

*"^

SS

8

20 -

10 -

-10 -

-20 -

-30 -

-40

-50 L

du/Sv fon CR049S8504YS-95-08COREBC-4

0.20-0.22 RI

.1 1 10 100 VERTICAL EFFECTIVE STRESS (Wo)

1000

104

COEF

FICI

ENT

OF C

ONSO

LIDA

TION

(a

iT2/

9Qc)

m

-

m

m

o Ul

8

gf if C

D V

O"

B9

&3

IOEO

k vs log p' fonCR049S8504 YS-85-08 COREBC-4

IGE-l IrIOE-2 -

10E-3 -

10E-4 -

10E-6

IOE-7

IOE-8

10E-9

IOE-10.1 I 10 100

VERTICAL EFFECTIVE STRESS CkPd)

1000

106

5 r

e vs loq p' for: CR042S8504YS-85-08

COREBC-40.40-0.42 m

4.5 -

4 -

3.5

a i o

2.5

1.5

.5

.1 1 10 100

VERTICAL EFFECTIVE STRESS <kPd>

1000

107

250 r

200 -

150 -

100 -

50 -

-50 -

-100 -

u ve log p' fonCR042S6QEH YS-B5-08 CORE BC-4

-ISO L

.1 1 10 100

VERTICAL EFFECTIVE STRESS <kPa>

1000

108

50 r

40 -

30 -

20 -

lio £4

£ ^

0

UJ O

-20 -

-30 -

-40 -

-50 L

du/Sv fors CR042S8504 YS-85-08

COREBC-4 0.40-0.42 m

.1 1 10 100 VERTICAL EFFECTIVE STRESS <kPo>

1000

109

COEF

FICI

ENT

OF C

ONS

OLI

DATI

ON

Ccn

T2/9

ec)

o So

m

o Io

m C

O

o

m no

o

m£ o

oo

CQ

o

oT

°0

0o TO

O a t*

.

PERM

EABI

LITY

(c

m/s

ec)

o

mo

m

T GO

O TB

o

m cil

o

mB

o

m

o

o

o

o

250 r

-100 -

u vs log p' forsCR033S8505 YS-85-08

CORE BC-5aoi-aos n

-150 L

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

113

cn _j o

50 r

40 -

30 -

20 -

10 -

0

du/Sv for: CR033S8505 YS-85-08 CORE BC-5

0.01-0.03 ra

-20 -

-30 -

-40 -

-50 L

1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

114

COEFFICIENT

OF C

ONSO

LIDA

TION

(cnf2/sQc)

o m0

m O)

o m en

o m

o m

o m

o m§

Ln

m 70 >-

m 3

i i <

m CO E3 CO S3

o o

o

<

10EO r

k vs log p' fonCRQ33S85Q5YS-85-08CORE BC-5

0.01-0.03 m

iOE-i -

10E-2 -

10E-3

oI o

10E-4

10E-5

UJ

a:10E-6

10E-7

iOE-8

iOE-9

10E-10.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPo)

1000

116

5 r

e vs log p' for: CR053SB505YS-85-08CORE BC-50.19-0.21 ffi

4.5

4 -

3.5 -

a1-4a

2.5 -

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

117

250 r

u vs log p' for: CR053S8505YS-85-OBCORE BC-50.19-0.21 a

200

150 -

^100 (-Q.

50 -

CO CO

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS flcPa)

1000

118

DELT

A U/TOTAL VE

RTIC

AL S

TRESS

(X)

iMb

K*

O

O

Oro

o

8

COEF

FICI

ENT

OF C

ONSOLIDATION (cnf 2/

sec)

mo X

So T

i cu

o T roo T

TT

to o

< CO

10EO

10E-1

10E-2

10E-3

<uCO

CJ

10E-6

10E-7

10E-8

10E-9

IOE-10.1

R vs log p' for: CR053S8505YS-85-08

CORE BC-50.19-0.21 fll

1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

121

5 r

e vs log p' for: CR029S8505YS-85-08CORE BC-50.48-0.50 m

4.5 -

4 -

3.5

o

a t » o

2.5

1.5

.5

.1 I 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

122

250 r

u vs log p' for: CR029S8505YS-85-08

CORE BC-50.48-0.50 m

200 -

150 -

a a.

UJ CtL

en enUJa: a.UJ CtLo a.en enUJo xLU

too -

50 -

-50 -

-100 -

-150 L

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

123

DELT

A u/

TOTA

L VE

RTIC

AL S

TRES

S (%

)

Ji

o4s

* O

ro

oi i *

oro

o

oen

o

to

m

TO m

m a

q i i S en ffi

tn g

to Ul

fii

COEF

FICI

ENT OF

CONSOLIDATION <

c«A2/9ec>

*-

i R

o

fn CO

o

sssl

SPERMEABILITY (

cn/soc)

R£2

£2

rn

mro

i i

i i

Till

8

5 r

e vs log p' for: CH056SB505YS-85-08CORE BC-5

0.47-0.51 n

4.5 -

4 -

3.5 -

3 -

o

i a.s

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

127

250 r

200 -

150 h

glOO

50 -

B5 0

-50 -

-100 -

u vs log p' fOP: CR056S8505YS-85-08CORE BC-5

0.47-0.51 ffl

-150 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

128

50 r

40 -

30 -

20 -

10 -

L-20

-30

-40

du/Sv for; CR056S8505YS-85-08CORE BC-5

0.47-0.51 i

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

129

COEFFICIENT

OF C

ONSOLIDATION (cuA

2/sec)

m

canm 01

CO

T"

T ro

U) O

< CD

10EO r

10E-1 -

10E-2 -

iOE-3 -

slOE-402

U

10E-6

10E-7

10E-B

10E-9

10E-10

k vs log p' for: CR056SB505YS-85-08

CORE BC-50.47-0.51 n

.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

131

4.5

Q vs log p' fort CR039S85D6YS-85-08CORE BC-6

0.01-0.03 m

3.5

o » i

ia i « o

2.5

1.5

.5

.1 I 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

132

U) u>

o 8

I »-* SS

I »-* 8EXCESS PORE

PRESSURE (

kPo)

$

8

P o

50 r

40 -

30 -

20 -

10 -

du/Sv for-. CR039S8506YS-85-08

COREBC-60.01-0.03 m

CO

o» I

I3-10

«<

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPcD

1000

134

COEFFICIENT

OF C

ONSO

LIDA

TION

(cnT2/9Qc)

o

mB

o

m tiio

m

o

m CO

R ro

o

mo

m

o

m o

CO en

o CD

O

D T

O

O A

"&

%

PR IP **-> o C

O

CO

C

O oo

en

o

a*

iOEO r

10E-1

10E-2

10E-3

^ IOE-4

CDa10E-6

10E-7

IQE-8

10E-9

10E-10.1

k vs loq p' for:CR039S8506 YS-85-08 CORE BC-6

I 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

136

5 rIi

e vs log p' fora CR050S8506YS-85-08

COREBC-6a 17-0.19m

4.5

3.5 (-

a «o

2.5

1.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

137

200 -

150 -

3100 -

50 -

S3

u vs log p' fonCR050S8506YS-85-Q8

CORE BC-60.17-0.19 «

-50

-100

-150

.1 1 10 100

VERTICAL EFFECTIVE STRESS

1000

138

50

40

30 -

20 -

10en_i3

3 -10-c

-20 -

-30 -

-40 -

-50 L

du/Sv fon CR050S8506 YS-85-G8

COREBC-6 a 17-0.19

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

139

9 S

sCOEFFICIENT

OF C

ONSOLIDATION (

cw^/

sec)

»-*

i-»^^

^^

?! CO

p CO

S

P

"5*~t S ot^

3*s

j ^g M*

%

^S??

i O *

i* ~l

CO

I W

__ O) *° n

aen

10EO

10E-1

10E-2

10E-3

r

CD

lOE-6

10E-7

10E-8

10E-9

10E-10.1

k vs log p' for*CRQ5QS8506 YS-85-Q8 COREBC-6

0.17-0.19 w

1 10 1QQ

VERTICAL EFFECTIVE STRESS CkPo)

1000

141

5 r

e VG log p' for* CR043S8506YS-85-08COREBC-60.44-0.46 m

4.5 -

4 -

3.5

o » 4

ia » 4 o

2.5

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

142

250 r

200 -

150 -

100 -

50 -

§

-50 -

-100 -

u vs log p' fonCR043S8506YS-85-08

COREBC-60.44-0.46 m

-150 L

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

143

50 r

du/Sv fon CR043S8506 YS-85-08

COREBC-6 0.44-0.46 m

.1 1 10 __100 VERTICAL EFFECTIVE STRESS CkPo)

1000

144

COEF

FICI

ENT

OF C

ONSO

LIDA

TION

(c

m*2/

9ec)

Ti

T UlO m

R J,

Ul

o

IOEO r

k vs loq p' for:CR043S8506YS-85-08CORE BC-6

0.44-0.46 m

10E-1 -

IOE-2

IOE-3

IOE-4

glOE-5

m LU

IOE-6

IOE-7

IOE-8

10E-9

10E-10.1 I 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

146

5 r

e vs loq p' for: CR034S8507YS-85-08

CORE BC-70.03-0.05 m

4.5 -

4 -

3.5 -

2.5

o

1.5

.5

.1 I 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

147

250

u vs log p' for:CRQ34S8507YS-85-08CORE BC-7

0.03-0.05 m

200

150

oQ_

100

en

8: 50

en en

LU 0

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

148

DELT

A u/

TOTA

L VE

RTIC

AL S

TRES

S tt>

VO

8 * O f= CO

i »-*

o

CO

g ^~

g

COEF

FICI

ENT

OF C

ONSOLIDATION (c

nf 2/

sec)

B A9 03

ui o

m S <?

8

p SCD

i* O a

10EO r

k vs loq p' for:CR034S8507YS-85-08CORE BC-7

0.03-0.05 m

lOE-i -

10E-2 -

10E-3 -

o cuCD

o

10E-4

t 10E"5

CD

LU

a:iOE-6

10E-7

10E-8

iOE-9

iOE-iO.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPd)

LOOO

151

5 r

e vs log p' for: CR054S8507YS-85-OBCORE BC-7

0.19-0.21 in

4.5

3.5

o i i

ia i « o

2.5

1.5

.5

.1 1 10 100 VERTICAL EFECTIVE STRESS (kPa)

1000

152

250 r

u vs log p' fOP: CR054S8507YS-85-08CORE BC-70.19-0.21 n

200

150

15100Q_

50

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

153

50 r

40 -

30 -

20 -

10 -

du/Sv for: CR054S8507 YS-85-08 CORE BC-7 1.19-0.21 n

CO

CJ

I -10

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

154

10EO r

Cv vs log p' for: CR054S8507YS-85-08

CORE BC-70.19-0.21 n

10E-1 -

10E-2 -

u09

o

i 10E-3^^

O

10E-4

10E-5

10E-6

10E-7.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

155

10EO r

iOE-i -

10E-2 -

10E-3 -

-ZjiOE-4 <uCO

CJ

10E-5

10E-6

10E-7

10E-8

10E-9

10E-10

k vs log p' for: CR054S8507YS-85-08

CORE BC-70.19-0.21 ffl

.1 1 10 100

VERTICAL EFFECTIVE STRESS flcPa)

1000

156

5 r

e vs log p' for: CR030S8507YS-85-Q8

CORE BC-70.45-0.47 m

4.5 -

3.5 -

CD

o

2.5

1.5

.5

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

157

250 r

u vs log p' for: CR030S8507YS-85-08CORE BC-7

0.45-0.47 m

200 h

150 h

100

LU

co en

UJ Q£ Oa.CO CO LU CJ X LU

50

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

158

CO

CO

50 r

40 -

30 -

20 -

to -

oI I

fe oLU U

O

LLl

-to -

-20 -

-30 -

-40 -

-50 u

du/Sv for: CR030S8507 YS-85-08 CORE BC-7

. 0.45-0.47 m

I 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

159

ICO

EFFI

CIEN

T OF CONSOLIDATION (

cw^/sec)

S F

iOEO r

10E-1 -

iOE-2 -

IOE-3

1QE-4

10E-7

iOE-8

IOE-9

iOE-10.1

k vs log p' for:CRQ30S85Q7YS-85-08COREBC-70.45-0.47 n

1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

161

r

e vs log p' for: CR057SB507YS-85-08COREBC-70.44-0.48 n

4.5 -

4 -

3.5

So2.5

1.5

.5

i 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

162

EXCE

SS PORE

PRESSURE (k

Pa)

U)m o

CO

§

U1

OS

ro

< CO

OB *f»

7<b

^OD

o -3 CJ!

50 r

du/Sv for: CR057S8507 YS-85-08 CORE BC-7 0.44-0.48

40 -

30

20

1,0 ft

-10

-20

-30

-40

-50

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

164

COEF

FICI

ENT

OF C

ONS

OLI

DATI

ON

(coT

2/se

c)o T

CO

T"

T ro

ui

§

CO

10EO r

iOE-i -

10E-2 -

10E-3 -

-510E-4CO

o

£ 10E-5r^

10E-6

10E-7

10E-8

10E-9

10E-10

k vs log p' fOP: CR057S8507YS-85-08COREBC-7

0.44-0.48 n

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

166

5 r

e vs log p' fort CR04QS8508 YS-85-08

COREBC-8Q.oi-o.03 m

4.5 -

4 -

3.5 -

3 -

o i

ia o

2.5

1.5

.5

.1 i 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

167

I I-* a8

EXCE

SS P

ORE

PRES

SURE

(k

Pa)

08

8I

ri

i i

r

K F

oo

L.

8

50 r

40 -

30 -

20 -

du/Sv for: CR040S8508YS-85-08COREBC-80.01-0.03 m

I-

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPo)

1000

169

COEFFICIENT

OF C

ONSO

LIDA

TION

(cm-2/sec)

1B til

o ma

R roo s

o R m

O O

CO

o m

o T

m

o

o m I /~\ I

Rs

PERM

EABI

LITY

(c

m/s

ec)

S{~)

f")

m

rnB

CD

o

mo s 3

CD S CO

5 r

4.5 -

4 -

3.5

2.5

1.5

.5

e vs log p' for. CR048S8508YS-85-08CORE BC-80.17-0.19 R

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

172

250 r

U vs log p' fOP: CR048S8508YS-85-08CORE BC-80.17-0.19 IB

200

150

100

50

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

173

50

40 -

30 -

20 -

10 -

du/Sv for: CR048S8508 YS-85-08 CORE BC-8

0.17-0.19 i

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

174

Xo X

COEF

ICIE

NT O

F CO

NSOL

IDAT

ION

(cnf

3/se

c)

i-*

i-*m

rn 0

3ro

o

rn

Ul

m CO

g

CO

o

to CD

10EO r

k vs log p' fOP: CR048S8508YS-85-OB

CORE BC-80.17-0.19

10E-1 -

10E-2 -

10E-3

-310E-4 o>CO

o

£ 10E-5r^V

10E-6

10E-7

10E-8

10E-9

10E-10.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

176

VOID

RAT

IO

en

?

cnno

T

cn

T-

co ~r

cncn

cn

"~1

ID

i-* 8EX

CESS

PORE PR

ESSU

RE (

kPo)

o

&

8

oo n

p

£3 §

^55

«J

c8-<-a o 3 t

CO CO

50 r

40 -

30 -

20 -

10 -CO

-20 -

-30 -

-40 -

-50 L

du/Sv fon CR044S8508YS-85-08

CORE BC-80.90-0.52 m

.1 I 10 100 VERTICAL EFFECTIVE STRESS CkPo)

1000

179

COEFFICIENT OF C

ONSOLIDATION (

o«*2/9eo)

ru

00 o

to

o

P

i§sl?

0-&

W&

j!

"?>

PERM

EABI

LITY

(c

m/s

ec)

B

doJi

sT C

O

t-1

cx»

o o en CO

4.5

3.5

e vs Loq p' for: CR035S8509YS-85-08CORE BC-90.01-0.03 m

o iCD

2.5

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

182

250 r

u vs log p' for:CR035S8509 YS-85-08 CORE BC-9

Q.oi-o.03 m

200 -

150 -

100 -

50 -

or oa.enCOa

-50 -

-100 -

-150 L

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

183

50 r

40 -

30 -

20 -

du/Sv fors CR035S8509YS-85-08CORE BC-9

0.01-0.03 in

CO

23 10ccCO

o» II«

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

184

CO

EFFI

CIE

NT

OF C

ONS

OLI

DATI

ON

<c«f

2/9

Qc>

HT O

)

o

m enR

o T CO

o

mo T

o

m

o

00 Ln

CO m CO to

o CD o

oO

C

D

o

-.o

oC

O

om

CD

O 0

CO

I CO

en o

ooo r>

o CO en CO oo

en

CD CO

PERMEABILITY (cm/soc)

o

mo

m CO

T 00

RO m

01

o

mo

rn

o

mo

m ro

o

mo

m

o

oo

cr>

m i i

o o m CO m

to CO

o

^r

< oo

<o

o

Ico

<

r±*

\O

moo

-r>

PC

D^

°O

OA

,,?

^C

^^G

3

CD

CO en CO

C

O en

o CO

re vs log p' for: CR055S8509

YS-85-08CORE BC-9

0.195-0.215 m

4.5

3.5 -

3 -

ao2.5 -

1.5

.5

.1 1 10 100 VERTICAL EFECTIVE STRESS (kPa)

1000

187

250 r

200 -

150 -

100

50

-50

-100

u vs log p' for: CR055S8509YS-85-08CORE BC-9

0.195-0.215 n

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

188

50 r

40 -

30 -

20 -

10 -

du/Sv for: CR055S8509YS-85-08CORE BC-9

0.195-0.215 n

CO

o

-10 -

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

189

COEF

FICI

ENT OF

CONSOLIDATION (cif 2/

sec)

O T cntl)

T roT

O m

Ol

< CO S

10EO r

10E-1 -

10E-2

10E-3

sCJ

&10E-5^^

10E-6

10E-7

10E-8

10E-9

10E-10

k vs log p' fOP: CR055S8509YS-85-08CORE BC-9

0.195-0.215 n

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

191

5 r

Q vs loq p' for: CR031S8509YS-85-08CORE BC-9

0.48-0.50 in

4.5 -

4 -

3.5

a i i o

2.5

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

192

250 r

200 -

150 -

oQ_ JC

LU

cn

Q_

LU CX. O Q_

100

50

LU Q

-50

u vs log p' for: CR031S8509YS-85-08CORE BC-9

0.48-0.50 m

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

193

50 r

40 -

30 -

20 -

V «-»^ 10 en_io i i

ffi o

LUa

-10 -

-20 -

-30 -

-40 -

-50 L

du/Sv for: CR031S8509YS-85-08CORE BC-9

0,48-0.50 m

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

194

COEFFICIENT

OF C

ONSO

LIDA

TION

<c

»*2/

9Qc)

u>ffi IV

J

Ul

ffi

P0

<8

fes<

f°-

iffl

^Q

?!*S

10EO

iOE-i

10E-2

10E-3

10E-4

IOE-6

IOE-7

IOE-8

IOE-9

iOE-10.1

k vs log p' for»CR031S8509 YS-85-08 CORE BC-9

0.48-0.50 m

I 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

196

5 r

4.5 -

e vs log p' for: CR05BS8509YS-85-OBCORE BC-9

0.47-0.56 n

3.5

oI-HO

2.5

1.5

.5

1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

197

250 r

200 -

150

50 -

-50

-100

-150

u vs log p' for: CR05BSB509YS-85-08COREBC-90.47-0.56 i

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

198

50 r

40

30

20 -

10 -CO

du/Sv for: CR058S8509 YS-85-OB CORE BC-9 0.47-0.56

-20

-30

-40

-50

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

199

COEFFICIENT

OF C

ONSO

LIDA

TION

(cnf 2/

sec)

7 O)1

7O T CD

ruo m

to o o

10EO r

HOE-1 -

10E-2 -

10E-3 -

-510E-4 H0) .CD

10E-5

10E-6

iOE-7

10E-8

10E-9

iOE-10

k vs log p' for:CR058S8509YS-85-08COREBC-90.47-0.56 n

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

201

5 r

4.5 -

4 -

3.5 -

1.5

.5

e vs ioq p' for: CR036S8510YSr85-08

CORE BC-100.01-0.03 m

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

202

250

u vs log p' forsCRQ36S8510YS-85-08

COREBC-10aoi-0.03 m

200

150

100

50

a?sen

-50

-100

-150

.1 1 10 100

VERTICAL EFFECTIVE STRESS <kPa>

203

1000

DELTA

u/TOTAL VE

RTIC

AL S

TRESS

<X)

i oo

to

o

8

COEF

FICI

ENT

OF C

ONS

OLI

DATI

ON

(cnf

2/s

Qc)

o

mo

m

RO m

oo

o T ro

m

to

o

Lnm

o m 53

ff

l a

o o

o o

o

o

CD

§ CO

C

D

01

10EO r

vs loq p' for: CR036S8510 YS-85-08CORE BC-10 0.01-0.03 m

IQE-l -

IDE-2

IDE-3

iOE-4

IDE-5

GQ

IOE-6

iOE-7

10E-8

10E-9

tOE-iO.1 t 10 100

VERTICAL EFFECTIVE STRESS (kPo)

1000

206

VOID

RAT

IO

ui

uiU

IT

~en

ui

"1

DELT

A u/

TOTA

L VERTICAL S

TRESS

(X)

1 I-* O

to

o

10o

EXCE

SS P

ORE PRESSURE (

kPo)

to

o 00

tL

JL

^.

t^

r>o

Bf^

^j

\ u

\ f*}

i u

\ {^

j ^^

CD

^^

^^

^^

^

j ^*

^

i r

rr ii

r i

I? FO

co

ICO

EFFI

CIEN

T OF

CON

SOLI

DATI

ON

<c»A

2/9e

c)»-*

«-»

Rfi

m

Jk

. u

)ro

Ni

H

O

i? F

8

? 5 »

Po

«8

i-*

& -

2f

-9S

lfCO

^LW

**a

O

O

iOEO r

k vs log p' forsCR05lS85lOYS-85-08COREBC-100.17-a 19 m

10E-1 -

10E-2 -

IOE-3

- 10E-4

1glOE-5_i i *3 ££ 1QE-6

IOE-7

10E-8

IOE-9

10E-10.1 1 10 100

VERTICAL EFFECTIVE STRESS <kPa>

1000

211

5 r

e vs loq p' fors CR032S8510YS-85-08

CORE BC-100.52-0.54 m

4.5 -

4 -

3.5 -

2.5

1.5

.5

0.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)1000

212

250 r

u vs log p' for:CR032S85lOYS-85-08CORE BC-IO0.52-0.54 m

200 -

150 -

o4

100

en

8O.

50

a55 o

-50

-100

-150

.1 I 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

213

50 r

40 -

20 -

10 -en_i o

o

=> -10 -

UJa

-20 -

-30 -

-40 -

-50 L

du/Sv for: CR032S8510YS-95-08

CORE BC-100.52-0.54 m

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

214

COEF

FICI

ENT

OF C

ONSO

LIDA

TION

(c

nf 2/

9ec)

sO T CD

o TO 8

to H

Ln

o o

PERMEABILITY (C

HI/S

QC)

o m i i

o

o

m CO

Bo m --o

o

mo

m 01

o

mo

m C

O

o m ro

o m io

m

o

m

~n m

r> m CO m

co CO

o O -

CO

cocn

o ~

~

o

o

o

OO

O ?o

o CO ro CO

C

D

C/l

o

o

o

4.5

4 -

3.5

Q vs log p' fon CR045S8511YS-85-08

CORE BC-110.005-0.025 m

ot I

n 2.5

1.5

.1 1 10 100

VERTICAL EFFECTIVE STRESS <kPa>

1000

217

250 r

u vs log p' for*CR045S8511YS-85-08

CORE BC-110.005-0.025 m

200 -

150 -

100 -

50

£

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPa)

1000

218

50 r

40 -

30 -

20 h

10 -

du/Sv fon CR045S85UYS-95-08

COREBC-110.005-0.025 m

CO

-10 -

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS CkPo)

1000

219

R - 4

sCO

EFFI

CIEN

T OF

CON

SOLI

DATI

ON <

cinA2

/9ec

)i

r-»

»

m

rn

HI

rn

cii

iI CO

P F; s

8

(0 £nS

xj

sl"

^

1 o .1 en

10EO r

10E-1 -

10E-2 -

10E-3

1QE-4

E IOE-5 it 4

CD

iOE-6

iOE-7

10E-8

iOE-9

ICE-10

k vs logo' for:CR045S8511YS-85-08COREBC-ll

0.005-0.025 m

.1 1 10 100

VERTICAL EFFECTIVE STRESS CkPa)

1000

221

5 r

e vs log p' for: CR052S8511YS-85-08CORE BC-110.18-0.20 n

4.5 -

4 -

3.5 -

a>Ho

2.5

1.5

.5

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

222

250 r

200 I-

150 h

50

a

-50

-100

-150

u Y3 log p' for: CR052S8511YS-85-08

CORE BC-il0.18-0.20 ffl

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

223

*t

CO

CO

50 r

40 -

30 -

20 -

10 -

du/Sv for: CR052S8511YS-85-08CORE BC-110.18-0.20 n

3-10 -

-20 -

-30 -

-40 -

-50 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

224

COEFFICIENT

OF CONSOLIDATION (cnf 2/

sec)

xT CJ

l

O TC

Oro

o T

to

to

5?

§

< CO o (O CJI

10EO r

k vs log p' for:CR052S8511YS-85-08

CORE BC-li0.18-0.20 m

10E-1 -

10E-2 -

10E-3 -

310E-4 hO> CO

£ 10E-5i^^

10E-6

10E-7

10E-8

10E-9

10E-10.1 1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

226

5 r

e vs log p' fon CR046S85UYS-85-08COREBC-U0.50-0.52 m

4.5 -

3.5

2.5

1.5

.5

.1 t 10 100 VERTICAL EFFECTIVE STRESS (kPo)

1000

227

250 r

u vs log p' for»CR046S85llYS-65-08

CORE BC-110.50-0.52 m

200 -

150 -

'o32

100 -

£ 50

UJ

/

-50

-100

-150

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

228

DELTA

u/TOTAL

VERTICAL STR

ESS

(X)

N)

N)O

01

8

I»-* O

O

COEFFICIENT

OF C

ONSO

LIDA

TION

(ci

«A2/

9QC)

U)

ro

NJ

U) o

p I? F i i S

3

8

PR

j2aS

5K

»9

Sf

PERM

EABI

LITY

(e

n/se

c)

to U)

ro

T"

;r §

5 r

e vs log p' for: CR059S8511YS-85-08CORE BC-il0.48-0.54 n

4.5 -

3.5

s3 o

2.5

1.5

.5

1 10 100 VERTICAL EFFECTIVE STRESS tkPa)

1000

232

250 r

200 -

150 -

slOO

50 -

-50 -

-100 -

u vs log p' for:CR059S8511YS-85-08CORE BC-li0.48-0.54 n

-150 L

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

233

50 rti J

40 j-1

30 -

20 -

1 10 h fe

-10

-20

-30

-40

-50

du/Sv for: CR059S8511 YS-85-08

CORE BC-ii 0.48-0.54

.1 1 10 100 VERTICAL EFFECTIVE STRESS (kPa)

1000

234

rnI

COEF

FICI

ENT

OF C

ONSO

LIDA

TION

(c

nf 2

/sec

)

ro

o Trn

to U)

Lns T £ 3

§

CO

PQ

»

2

I i3

^^o

" I

10EO r

10E-1 -

iOE-2 -

10E-3 -

siOE-40> 5

giOE-5^^^

10E-6

iOE-7

10E-B

iOE-10.1

k vs log p' for.CR059S85ilYS-85-08

CORE BC-il0.48-0.54 n

1 10 100

VERTICAL EFFECTIVE STRESS (kPa)

1000

236

Appendix D

Results of Consolidated-lsotropic-Undrained Triaxial Tests

tabular dataunedited individual test plots unedited multiple test plots

237

TABULAR DATA

238

Con

solid

ated

-lsot

ropi

c-U

ndra

ined

Tria

xial

Tes

t R

esul

ts

OJ

Cor

e Te

st

no.

BC

-5

1 2 3 4

BC

-6

1 2 3 4

BC

-7

1 2 3 4

BC

-8

1 2 3

BC

-11

1 2 3 4

Dep

th

w

in c

ore

(m)

(%)

0.42

10

510

210

510

0

0.36

11

912

011

611

4

0.39

47 47 46 46

0.44

45 48 45

0.41

58 59 58 61

V

(%)

46 50 56 78 50 54 61 92 28 29 31 43 29 31 43 32 36 38 52

°'c

kPa

210.

313

8.3

66.9 1.7

208.

114

1.3

67.3 1.3

259.

919

0.3

116.

12.

6

208.

499

.8 3.1

209.

413

7.7

67.8 2.5

*f 0.81

0.89

0.66

0.42

0.92

1.00

0.75

0.29

1.00

1.07

0.89

0.10

0.85

0.77

-0.2

3

0.95

0.97

0.66

0.06

Stra

in a

t

failu

re

(%)

11.1

17.3

16.3

19.0

11.9 9.0

10.2 9.9

19.9

11.4

13.0

19.1

19.9

17.6

18.0

10.6

10.0

15.2

16.9

Su

kPa

88.1

56.5

37.0 3.4

76.9

44.8

31.6 3.8

97.2

68.2

49.0 8.5

88.7

44.1

2.5

80.9

51.4

38.6 5.4

SM/a

' 0'

0'

0'""

U

\f

max

obi

J'

max

q

max

obi

. (c

'= 0

) (c

'= 0

) (c

V 0

) de

g.

deg.

de

g.

0.42

0.41

0.55

2.00

0.37

0.32

0.47

2.92

0.37

0.36

0.42

3.27

0.43

0.44

0.81

0.39

0.37

0.57

2.10

36.1

37.0

42.8 33

.728

.640

.0 36

.937

.838

.6 37

.937

.1 36.6

35.5

44.1

34.6

36.8

42.4

35.4

32.2

27.8

38.5

31.9

36.8

37.6

38.4

35.5

37.6

36.5

38.5

36.4

35.3

43.8

34.9

c' kPa

3.1

1.5

4.2

0.0

3.8

Dep

th in

cor

e is

sam

plin

g m

idpo

int f

or te

st s

erie

s

T W

ater

con

tent

at e

nd o

f tes

t**

0 ',

c' v

alue

s ba

sed

on 3

-4 te

sts

TT o

bliq

uity

= a

/ a

'

Sym

bols

ar

e ex

pla

ined

in

A

ppen

dix

A,

INDIVIDUAL TEST PLOTS

240

4 g to Q. tr

2 1 0

5 r

103

4

pf

(kPa)

q vs p

q vs

AX

IAL

STRA

IN

delta

PORP vs

AXIAL

STRA

IN

grap

hs fo

r:

TS075S8505

CRUI

SE:

YS-85-08

CORE:

BC-5

SAMP

LE IN

TERV

AL:

0.39

-0.4

6 m

to Q.

Q. g Q.

ID

4J

r~

l <D a

10

15

STR

AIN

(%

)

2025

10

15

STR

AIN

(%

)

20

to £*

N)

75 60

45

£

30 15

1530

45

60

P'

(kPa

)

75

q vs

p*

q vs

AX

IAL

STRAIN

delt

a PO

RP vs

AXIAL

STRAIN

graphs fo

r:

TS072S8505

CRUISE:

YS-85-08

CORE

: BC

-5SA

MPLE

IN

TERV

AL:

0.39-0

.46

n

90

105

75 r

60

* 45

Q.

c£ cr 30 15 60 r

4J

<r-l

0) TJ

10

15

STRA

IN

(%)

10

15

STRAIN

(%)

2025

to

150

120

-

90CO

Q

. cr

60

30 °c

r 15

0

120

90

ID

CL

pr-

- or

60

\

30

- - - -^

. -

.

- .. .

till!

) 30

60

90

12

0 15

0 18

0 21

0 °

Q 5

1Q

15

20

25

p'

(kP

a)

STR

AIN

(%

)

q vs

p

q vs

AX

IAL

STRA

IN

delta

PORP

vs

AXIAL

STRA

IN

graphs fo

r:

TS07

3S85

05

CRUISE:

YS-8

5-08

CORE

: BC-5

SAMP

LE IN

TERV

AL:

0.39-0

.46

m

10

15

STRAIN

(%)

2025

200

160

Q.

Jj£ or 80 40 0

to40

8012

0 160

p*

(kPa)

200

240

280

q vs

p'

q vs

AX

IAL

STRA

IN

delta

PORP vs AX

IAL

STRA

IN

grap

hs fo

r:

TS074S8505

CRUI

SE:

YS-8

5-08

CORE:

BC-5

SAMPLE IN

TERV

AL:

0.39

-0.4

6 m

200

160

a.

a- 80 40 0

C

200

~ - - -x^ *

I 1

I J

1

) 5

10

15

20

25

STRAIN

{%)

10

15

STRAIN

(%)

» 3

Q.

.2£ cr

2 1

N)4

(kPa)

q vs

p*

q vs AXIAL

STRAIN

delt

a PO

RP vs

AX

IAL

STRA

IN

graphs fo

r:

TS07

9S85

06

CRUISE:

YS-8

5-08

CORE:

BC-6

SAMPLE INTERVAL:

0.33

-0.4

1 m

(0

Q_

Q_ cr

o 0. (O <u TO

3 5

10

15

STRA

IN

(%)

2025

10

15

STRA

IN

(%)

2025

to Q.

75 60 45

cr 3

0 15 0to

1530

45

60

p'

(kPa)

75

q vs p

q vs

AX

IAL

STRAIN

delt

a PORP vs

AX

IAL

STRA

IN

graphs fo

r:

TS07

6SB5

06

CRUI

SE:

YS-8

5-08

CORE:

BC-6

SA

MPLE

IN

TERV

AL:

0.33

-0.4

m

9010

5

75 60

co 45

Q. cr 30 15

r

10

15

STRA

IN

(%)

i 2025

10

15

STRAIN

(%)

2025

125

r

100

To75

a. o- 5

0 25 025

50

q vs p

fq

vs AX

IAL

STRA

IN

delta

PORP

vs

AXIAL

STRAIN

graphs fo

r:

TS07

7S85

06

CRUISE:

YS-8

5-08

CORE:

BC-6

SA

MPLE

IN

TERV

AL:

0.33-0.40

m

125

100

1o 75

a. o- 50

10

15

STRA

IN

(%)

2025

CO

200

160

lo12

0Q

.

CT

80 40 °C

r 200

160

~1

20

ID O.

**

^^

o*

80

\

40

- - -*

ii\

i i

) 40

80

12

0 16

0 20

0 24

0 28

0 °

Q 5

1Q

15

2Q

2g

p*

(kPa

) 15

0ST

RAIN

(X

)""

~~

q vs

p

q vs

AX

IAL

STRA

IN

delta

PORP vs

AX

IAL

STRAIN

graphs fo

r:

TS078S8506

CRUI

SE:

YS-8

5-08

CORE:

BC-6

SAMPLE INTERVAL:

0.33

-0.4

0 m

120

CD

0.

^

90

Q. cr

o

Q-

60CD

4J to

30

10

15

STR

AIN

(X

)20

25

to £».

20

16

To 12

Q. or

8 4 °C

20

16

I ^

: /

[ - r__

> 4

8 12

16

aO

24

28

°

Q 5

10

15

2Q

25

p'

(kPa

) 2

1.6

q vs p

f _

q vs

AXI

AL S

TRAIN

£

delt

a PO

RP v

s AXIAL

STRAIN

~ *

-2Q_

CC

O

graphs fo

r:

TS064S85

07

^

-8

CRUI

SE:

YS-85-08

5

CORE

: 8C

~7

S

4 SA

MPLE INTERVAL:

0.35

-0.4

2 m

" j

o 1 C

STRA

IN

(%)

A/

J»/

'

^i, .^

t >V

' A

'N

/ 1

* 1

' !

'

) 5

10

15

20

25ST

RAIN

(%)

N)

Ul

100 80

co 60

Q. cr 4

0 20 o(r

100 80

co 60

Q.

j 20

y

) 20

40

60

80

100

120

140

° (

p'

(kPa

) 10

0 80q

vs p

' ^

q va AX

IAL

STRAIN

£

delt

a PORP v

s AX

IAL

STRAIN

~ 60

igr

aphs

for:

TS06

1S85

07

^ 40

CR

UISE

: YS-85-08

£

CORE

: BC-7

§ 20

SA

MPLE

INT

ERVA

L: 0.

35-0

.42

m

0 ' Cr

4 1

L

1 I

) 5

10

15

20

25

STRAIN

(%)

\ !..,,.

) 5

10

15

20

25

STRAIN

(%)

en

£UU

160

^1

20

to Q

. or

80

40 °C

dUU

160

Q.

or

80

^v

40

) 40

80

12

0 16

0 20

0 24

0 28

0 °

(

pf

(kP

a)

200

160

q vs

p

f ^

q vs

A

XIA

L S

TRA

IN

£

delta

PORP

vs

A

XIA

L S

TRA

IN

~ 1

2<>

0. cc

og

rap

hs

for:

T

S06

2S85

07

*

80

CR

UIS

E:

YS

-85

-08

5

CO

RE:

ac-

7

S

40

SAM

PLE

INTE

RV

AL:

0.3

S-0

.42

m

0 Cr f

* - - ~

__

\ 1

' 1

I I

) 5

10

15

20

25

STR

AIN

(%

)

[it'll

) 5

10

15

20

25

STR

AIN

(%

)

250

200

-.1

50

CD OL

crlO

O 50 °C

to

(J\

to

r 25

0

200

1

50CD OL

^

crlO

O

Xy,

50

r - -

--- -

' i

i i

i i

) 50

10

0 15

0 20

0 25

0 30

0 35

0 °

Q 5

1Q

15

2Q

25

pf

(kP

a)

STR

AIN

(%

)30

0 r

250

-

q vs

pq

vs A

XIAL S

TRAIN

delt

a PO

RP v

s AX

IAL

STRA

IN

graphs for:

TS063S8507

CRUISE:

YS-8

5-08

CORE:

BC-7

SAMP

LE INTERVAL:

0.35-0.42

m

"200

£150

o

OL * 100

o>

o50

10

15

STRAIN

(X)

2025

5 4 qlo

0. cr

2

. °1

(j\ CO

r

5 4 3(0 Q

.j^

^^

*"*

*-^^

C3*

^~

i i u i i i i

o !~ - -

fv

\ '

/

} i

2 3

4 5

6 7

0 5

10

15

20

p*

(kP

a)

STR

AIN

(%

)

25

1 r

q vs

p'

q vs

AXI

AL S

TRAI

N delta

PORP v

s AX

IAL

STRAIN

grap

hs f

or:

TS06

7S8508

PflU

ISG

YS-8

5-08

CORE:

BC-8

SAMPLE INTERVAL:

0.41-0.48

n

P10

15

STRA

IN

(%)

2025

NJ

Ul

100

-

80

-

to

toCL

CL

o- 40

-

f

cr

20

- ^,

° 0

20

40

60

80

100

120

140

p'

(kPa

)

q vs

p'

^

q vs

AXIAL

STRA

IN

£

delta

PORP

vs

AXIAL

STRAIN

~ CL

g

graphs fo

r:

TS06

5S85

08

°"

CRUISE:

YS-85-08

5

CORE

: BC

-8

S

SAMPLE IN

TERV

AL:

0.41

-0.4

8 m

100 80

60

40

20 0 C

100 80

60

40

20 0 C- L

i i

\ i

\)

5 10

15

20

25

STRA

IN

(%)

L 4

i i

i i

) 5

10

15

20

25

STRA

IN

(%)

200

160

^2

0ID

Q

. cr

80

40 o

Cro en

LH

200

160

*IO a.

C_

^^^

a-

80

\ 40

i \

i i

i /'

i -i

n)

40

80

120

160

200

240

280

w (

p1

(kP

a)

200

160

q vs

p

' ^

q vs

A

XIA

L S

TRA

IN

£

de

lta

PO

RP

vs

AX

IAL

STR

AIN

~

i2

0a.

cr 0

gra

ph

s fo

r:

TS

066S

850B

a

80

CR

UIS

E:

YS

-85

-08

5

CORE

: 8C

-6

§

40

SAM

PLE

INTE

RV

AL:

0.4

1-0

.48

n

0 C; r***

**

\~

1 4

l !

1

) 5

10

15

20

25

STR

AIN

(%

)

[1

41

41

) 5

10

15

20

25

STR

AIN

(%

)

to Ul

7

4

<o Q.

CT

1

.5

6 .5 3 .5 °c

r 7>

5 6

J&

lo

4'5

$/

Q.

3

1 5

A . W

,

) 1

.5

3 4

.5

6 7

.5

9 1

0.5

°

r t

pf

(kPa

)

q vs p

*q

vs AX

IAL

STRAIN

de

lta

PORP

vs

AXIA

L STRAIN

graphs fo

r.

TS071S

8511

CRUISE:

YS-8

5-08

CORE:

BC-1

1 SAMPLE I

NTERVAL: 0.38-0.45

n

(0 a. CL § Q.

(O 03

TJ

-13 -

2 -

1 -

STRA

IN

(%)

10

15

STRA

IN

(%)

2025

75 60

Q.

.2*

to Ul

cr 30 15

15

3045

60

p'

(kPa

)

75

q vs

p*

q vs

AXIAL

STRA

IN

delta

PORP

vs

AXIAL

STRAIN

graphs fo

r:

TS068S

8511

CRUI

SE:

YS-8

5-08

CORE

: BC

-11

SAMP

LE INTERVAL:

0.38

-0.4

5

90

105

10

15

STRAIN

(%)

25

150

120

90

(0 *

0. cr 6

0 30 °cto

tn 00

10U

120

75 90

a. cr 60

^v

30

) 30

60

90

120

150

180

210

° (

pf

(kPa)

150

120

q vs

p*

^q

VS AX

IAL

STRA

IN

£

delt

a PO

RP v

s AXIAL

STRAIN

- 90

Q_

grap

hs fo

r:

TS06

9S85

I1

^ 60

CRUISE:

YS-8

5-08

3

CORE:

BC-1

1 S 30

SA

MPLE

INTERVAL:

0.38-0.45

ffl

0 C-

t 1

! f

\

) 5

10

15

20

25

STRAIN

(%) r ) 5 10 15

20

25

STRAIN

(%)

200

160

Q. ^ or

80 40 0

K)

Ul

4080

120

160

p'

(kPa

)

200

240

280

q vs

p*

q vs AXIAL

STRAIN

delta

PORP

vs

AXIA

L STRAIN

grap

hs fo

r:

TS070S85

11

CRUISE:

YS-8

5-08

CORE:

BC-1

1 SAMPLE INTERVAL:

0.38-0.45

m

200

p

160

.-120

CO 0. ^ o- 80 40

CO

Q. * 120

Q. g Q. CO

4J

80

OS

T3 40

200

r

160

-

10

15

STRA

IN

(%)

2025

10

15

STRA

IN

(%)

2025

MULTIPLE TEST PLOTS

260

CO Q.

200

160

120

to

&i

I-1

cr 80

-

40

- 0 40

80

120

160

200

240

260

p'

(kPa)

q vs p

q vs

MUL S

TRAI

N de

lta

PORP v

s AXIAL

STRAIN

graphs fo

r:

TS072S

8505

CRUISE:

YS-85-08

CORE:

BC-5

SAMPLE IN

TERV

AL:

0.39-0

.46

m

160

-

£ &12

0C

L i ID f-l

09

80

-

40

10

15

STR

AIN

(%

)

10

15

STR

AIN

(%

)

20

25

20.

25

200

r

160

-120

f-ID Q. cr 8

0 -

40

-

to

to

40

80

120

160

200

240

280

p*

(kPa)

q vs

p'

q vs A

XIAL

STRAIN

delta

PORP v

s AX

IAL

STRAIN

graphs fo

r:

TS07BS8506

CRUISE:

YS-B5-OB

CORE:

BC-6

SAMPLE IN

TERV

AL:

0.33

-0.4

0

200

160

0.

80

-

40

0

150

r

10

15

STRA

IN

(%)

20

10

15

STRAIN

(%)

20

25 25

250

r

200

N)

C\

00

Q. erlO

O 50

0 50

100

150

200

250

300

350

p*

(kPa

)

Q VS D *

q VS AX

IAL

STRA

IN

delt

a PO

RP v

s AX

IAL

STRAIN

graphs for:

TS061S8507

CRUISE:

YS-85-08

CORE:

BC-7

SA

MPLE

INT

ERVA

L: 0.35-0.42

250

200

150

ID Q. crlOO

300

250

"200

10

15

STRA

IN

(%)

20

10

15

STRAIN

(%)

20

25 25

200

160

"co CL­

OT

80 40 0

j C

200

160

0.

C^^^

er

80

!, *

S ,,

, '',

.)

40

80

120

160

200

240

280

° c

pf

(kP

a)

" - - r~"

r~~~

1 5

10

15

20

25

STR

AIN

(%

)200

160

-q

vs p

fq

vs AX

IAL

STRAIN

delta

PORP

vs

AXIA

L STRAIN

graphs fo

r:

TS06

6S85

08

CRUI

SH:

YS-85-G8

CORt:

BC-8

SAMPLE IN

TERV

AL:

0.41-0.48

m

£ - 12°

Q.

g80 40 0

10

15

STRA

IN

(%)

2025

200

160

-120

to a. er 8

0 40

0to

cr»

ui

4080

120

160

p'

(kPa)

200

240

280

q vs

p'

q vs AXIAL

STRAIN

delta

PORP v

s AX

IAL

STRAIN

graphs fo

r:

TS070S8511

CRUI

SE:

YS-8

5-08

CORE:

BC-1

1 SAMP

LE INTERVAL:

0.38

-0.4

5 m

200

160

120

10 CL cr 80

r

10

15

STRAIN

(X)

10

15

STRA

IN

(X)

2025

2025