From LEP to LHC - CUSO...7.Search for the Higgs boson (II) Salvatore Mele CERN & INFN...

Post on 03-Mar-2021

5 views 0 download

Transcript of From LEP to LHC - CUSO...7.Search for the Higgs boson (II) Salvatore Mele CERN & INFN...

From LEP to LHC

1. Physics of the Z boson (I)2. Physics of the Z boson (II)3. Physics of the W boson4. Physics of the top quark5. Tests of the Standard Model6. Search for the Higgs boson (I)7. Search for the Higgs boson (II)

Salvatore MeleCERN & INFN

(Salvatore.Mele@cern.ch)

From LEP to LHC

Salvatore MeleCERN & INFN

(Salvatore.Mele@cern.ch)

1. Physics of the Z boson (I)• LEP (Statistics interlude)

2. Physics of the Z boson (II)• LEP (Statistics interlude)

3. Physics of the W boson• LEP, Tevatron, LHC (Statistics interlude)

4. Physics of the top quark• Tevatron, LHC

5. Tests of the Standard Model• LEP, Tevatron (Statistics interlude)

6. Search for the Higgs boson (I)• LEP (Statistics interlude)

7. Search for the Higgs boson (II)• Tevatron, LHC

Salvatore Mele | From LEP to LHC | Troisième cycle 3

Physics of the Z boson

•Z boson: what to measure?•The LEP accelerator and detectors•The Z “lineshape”•Energy and luminosity measurements•The tau polarisation•Measurements with heavy quarks•The SLD accelerator and SLC detector•Measurements with polarized electrons•A problem?•Extraction of the Z-boson couplings

#1

#2

Salvatore Mele | From LEP to LHC | Troisième cycle 4

Main bibliographic reference

The ALEPH, DELPHI, L3, OPAL, SLD Collaborations,the LEP Electroweak Working Group,the SLD Electroweak and Heavy Flavour Groups

[~2500 authors]

Physics Reports 427 (2006) 257arXiv:hep-ex/0509008

Salvatore Mele | From LEP to LHC | Troisième cycle 5

Z boson: what do we want to measure?Fundamental properties: mass, width, couplings

Fundamental Standard Model parameters (#5)

Two parts:1. How to measure mZ and ΓZ2. How to measure gAf and gVf

•mZ the Z boson mass•ΓZ the Z boson width•gAf (f=e,µ,τ,...,c,b)•gVf (f=e,µ,τ,...,c,b)

Salvatore Mele | From LEP to LHC | Troisième cycle 6

How to measure mZ and ΓZ ?1. Produce Z bosons UA1 PLB 129 (1983) 273

UA1 PLB 134 (1984) 469

Salvatore Mele | From LEP to LHC | Troisième cycle 7

What’s on the market ?

2. Produce LOTS of Z bosons

PDG J. Phys. G 33 (2006) 1

Salvatore Mele | From LEP to LHC | Troisième cycle 8

The e+e- -> ff process: producing Z bosons_

Z bosons decay into quarks (70%) leptons (9%) neutrinos(21%)

Salvatore Mele | From LEP to LHC | Troisième cycle 9

Useful definition in Z-boson physics

As above, with“leptonic universality”

A0FB

l

Leptonic forward-backwardasymmetries

A0FB

e, A0FBµ, A0

FB τ

As above, with“leptonic universality”R0

l= Γhad/Γll

Leptonic widths (expressed asfraction of hadronic)

R0e= Γhad/Γee

R0µ= Γhad/Γµµ

R0τ= Γhad/Γ ττ

ee->Z->qq cross sectionσ0had

Z-boson widthΓZ

Z-boson massmZ

Salvatore Mele | From LEP to LHC | Troisième cycle 10

Forward-backward asymmetry

l+

e+e-

l-

backwardforward

Salvatore Mele | From LEP to LHC | Troisième cycle 11

How to measure mZ and ΓZ ?

Information on mZ and ΓZ contained inσ0

had, R0l= Γhad/Γll, A0

FBl

CERN Report 89-08

Salvatore Mele | From LEP to LHC | Troisième cycle 12

Can’t you just take the invariant mass?

Salvatore Mele | From LEP to LHC | Troisième cycle 13

Requirements

• Produce Z bosons• Count Z bosons decaying into quarks

σ0had ∝ (NHad-NBack)/εSelL

• Count Z bosons decaying into leptonsR0

l ∝ Nhad/Nll

• Study angular distributions of decayproductsA0

FBl ∝ (NF-NB)/(NF+NB)

Salvatore Mele | From LEP to LHC | Troisième cycle 14

Producing Z bosons

Salvatore Mele | From LEP to LHC | Troisième cycle 15

Salvatore Mele | From LEP to LHC | Troisième cycle 16

Salvatore Mele | From LEP to LHC | Troisième cycle 17

Ferm

ion-

pair

sel

ecti

on

+21% νν

qq, 70%

µµ, 3% ττ, 3%

ee, 3%

Salvatore Mele | From LEP to LHC | Troisième cycle 18

Event selection

Salvatore Mele | From LEP to LHC | Troisième cycle 19

Event selection

Salvatore Mele | From LEP to LHC | Troisième cycle 20

The LEP data samplex103

Combination of four experiments halves statistical uncertainties.

Effects of uncorrelated systematic uncertainties are reduced by the combining experiments.

Salvatore Mele | From LEP to LHC | Troisième cycle 21

Off-peak data. Lumi/precision tradeoff

20/pb off peak

20/pb off peak

} 7/pb off peak

Salvatore Mele | From LEP to LHC | Troisième cycle 22

Life is not as easy as you would like it to be...

Salvatore Mele | From LEP to LHC | Troisième cycle 23

The “pseudo-observables”

σhad & σ0had

Salvatore Mele | From LEP to LHC | Troisième cycle 24

The “pseudo-observables”

AFBl & A0

FBl

Salvatore Mele | From LEP to LHC | Troisième cycle 25

Z “line shape”, from 15 million Z-> hadrons

Salvatore Mele | From LEP to LHC | Troisième cycle 26

Details of the hadron cross-section measurement

Salvatore Mele | From LEP to LHC | Troisième cycle 27

Measuring AFB

!

d"

dcos#$1+ cos

2# +8

3AFBcos#

Salvatore Mele | From LEP to LHC | Troisième cycle 28

Measurement strategy• Count Z bosons decaying into quarks to get σhad=(NHad-NBack)/εSelL• Correct σhad to σ0

had

• Count Z bosons decaying into leptons• Correct Nhad/Nll to R0

l (for each flavour)• Study angular distributions of decay leptons• Correct AFB

l = (NF-NB)/(NF+NB) to A0FB

l (for eachflavour)

• Fit σ0had, R0

l and A0FB

l to get mZ and ΓZ (9- and 5-parameter fit)

• (Combine measurements from the four experiments)

Salvatore Mele | From LEP to LHC | Troisième cycle 29

Results of the 9-parameter fit

Salvatore Mele | From LEP to LHC | Troisième cycle 30

Results of the 5-parameter fit

Salvatore Mele | From LEP to LHC | Troisième cycle 31

Statistical interludeCombine XA±δA and XB±δB

1. δA and δB are uncorrelated2. δA and δB are partially correlated

1.trivial answer: weighted average

!

< x >=

xA

A

2+xB

B

2

1

A

2+1

B

2

!

"x

=1

1

"A

2+1

"B

2

!

2=(x

A# < x >)

2

A

2+(x

B# < x >)

2

B

2

2 measurements- 1 parameter to determine= 1 d.o.f.

Salvatore Mele | From LEP to LHC | Troisième cycle 32

2. partially correlated uncertainties• Split the uncertainties in correlated and

uncorrelated parts

!

xA

± "A

U

± "A

C

!

xB

± "B

U

± "B

C

• Build error matrix

!

V ="A

U2

0

0 "B

U2

#

$

% %

&

'

( ( +

"A

C2

"A

C"B

C

"A

C"B

C "B

C2

#

$

% %

&

'

( ( =

"A

2 "A

C"B

C

"A

C"B

C "B

2

#

$

% %

&

'

( (

!

" =#A

C#B

C

#A

2#B

2• Calculate correlation coefficient

• Get the average, the uncertainty and the χ2

!

< x >=

Vij"1xi

i ,1

#

Vij"1

i ,1

#

!

"x

= Vij#1

i ,1

$

!

"2

= (xi# < x >)Vij

#1

i,1

$ (x j# < x >)

• Rephrase: the <x> is the one minimising the χ2

Combining experimentsXm=( ; ;... )

Measured DELPHIMeasured ALEPH

X=( , x4)Parameters of the fit

Correlation matrix of the common uncertainties

Correlation matrices of •LEP energy uncertainty ·t-channel correction•Luminosity uncertainty ·theoretical uncertainties

The solution minimises:

Measured L3Measured OPAL

Salvatore Mele | From LEP to LHC | Troisième cycle 34

A matrix at the timeMatrix of the correlation matrices

Salvatore Mele | From LEP to LHC | Troisième cycle 35

A matrix at the time

0.061% diagonal +small correlationbetween

Salvatore Mele | From LEP to LHC | Troisième cycle 36

Results of the 9-parameter fit

Results of the 5-parameter fit

Salvatore Mele | From LEP to LHC | Troisième cycle 37

Results of the 5-parameter fit

Salvatore Mele | From LEP to LHC | Troisième cycle 38

Measure of mZ to 23 p.p.m.

Control of systematic uncertainties is essential:•Theoretical uncertainties•Luminosity uncertainties•Energy calibration

The LEP luminosity

Need accurate measurement, beam parameters notenough to estimate L with the precision needed to

measure the electroweak parameters

!

L =N

b +Nb "frevkb#

$ x$ y

100µm 10µm

3x1012 11 kHz 4 0.01-1

=2 x 1031 cm-2s-1

How to measure the LEP luminosity

Cross sections are calculated knowing counts,efficiency, background and luminosity

Luminosity can be calculated kowing counts,efficiency, background and cross section!

Need to go to the per-mille. Need process with:•Extremely low background•Extremely well known cross section•Very high statistics

Bhabha scattering

Need to go to the per-mille. Need process with:•Extremely low background•Extremely well known cross section•Very high statistics

t-channel dominated at small angleExperimental uncertainty <0.07-0.10%/expExp. unc. mostly uncorrelated -> 0.05% totTheoretical uncertainty 0.11%

Salvatore Mele | From LEP to LHC | Troisième cycle 42

L3Luminosity monitors

•Small-angle calorimeters,possibly with tracker in front•1.4-1.8°<θ<3.1-3.3°•Mechanical precision/positionmeasurement crucial•Select events, count events,control efficiency andbackground

~2.5m

Luminosity measurement at LEP

Measurement of the beam energyDirect inference from the measurement

of the magnetic field

!

< Ebeam

>= e

2"Bdlorbit#

Flux loop and NMR allow a precision of 3 x 10-4

Need 1 order of magnitude better!

Resonant depolarizationCERN Report 89-08

Solokov-Ternoveffect

S S S S

~10%

BY

BX

•In electron storage rings, the bending in the XZ plane and the associateradiation give vertical polarisation in the transverse (Y) direction

•Electron spins precess with

•Vertical bending field does not induce polarisation. An additionalhorizontal field does

•The precession carries information on Ebeam:

!

dr S

dt=

r " #

r S

!

r " = #

e

ae$(1+ a

e$)

r B

!

ae" =

ae

mec2Ebeam

Resonant depolarizationVariation of Bx can bring S in the horizontal plane, wherepolarisation disappears

Use a single coil in the ring, oscillate Bx and look for aresonance with the turning beams

v = fdepolarisation/frevolution gives Ebeam through

!

r " = #

e

ae$(1+

ae

mec2

Ebeam)r B

Salvatore Mele | From LEP to LHC | Troisième cycle 46

Other parts of the saga• Resonant depolarisation precision of

200KeV!• Polarisation disrupted by beam-beam effect• Measurement performed with single-beam

special runs• Need extrapolations, including other info as

direct measurements of magnetic field.• Final precision 1MeV (2 x 10-5)

Salvatore Mele | From LEP to LHC | Troisième cycle 47

The energy is not the samefor all the experiments

(the 9- and 5- parameters fits need to know this!)

Salvatore Mele | From LEP to LHC | Troisième cycle 48

Attraction of the moon (Earth crust tides)•Beam movement of 13µm changes Ebeam of 1MeV!•Earth tides change diameter of the ring•Quadrupoles move off the orbit (or viceversa...)

10MeV effect daily, continuosly corrected for

Salvatore Mele | From LEP to LHC | Troisième cycle 49

Level of Geneva lake

10MeV effect weekly

Salvatore Mele | From LEP to LHC | Troisième cycle 50

Effects of the TGV

NMR measures the field, needed in the estrapolation for Ebeam

Salvatore Mele | From LEP to LHC | Troisième cycle 51

Three flavours and a Standard Model

Salvatore Mele | From LEP to LHC | Troisième cycle 52

Number of “light” neutrino species

τ mass correction -0.23%