Foreground subtraction or foreground avoidance?

Post on 22-Feb-2016

47 views 0 download

Tags:

description

Foreground subtraction or foreground avoidance?. Adrian Liu, UC Berkeley. Vision. The redshifted 21cm line is possibly our only direct probe of reionization and the dark ages. 21cmFAST, Mesinger et al. Current power spectrum limits from experiments like PAPER…. - PowerPoint PPT Presentation

Transcript of Foreground subtraction or foreground avoidance?

Foreground subtraction or foreground avoidance?

Adrian Liu, UC Berkeley

Vision

The redshifted 21cm line is possibly our only direct

probe of reionization and the dark ages

21cm

FAST

, Mes

inge

r et

al.

Current power

spectrum limits from

experiments like PAPER…

Parsons, AL et al. 2013, 1304.4991

…are sensitivity/integration time

limited at high k…

Parsons, AL et al. 2013, 1304.4991

…are likely limited by foreground

contamination at low k.

Parsons, AL et al. 2013, 1304.4991

Foreground contamination is serious

Foregrounds ~ O(100 K); Signal ~ O(1-10 mK)

Cosmic Microwave Background

21cm Tomography

(See AL, Pritchard, Tegmark, Loeb 2013 PRD 87, 043002 for more details)

Parsons, AL et al. 2013, 1304.4991

Foreground subtraction• Work at low k.• Instrumental noise

low.• Foreground

modeling requirements extreme.

Parsons, AL et al. 2013, 1304.4991

Foreground avoidance• Work at high k.• Instrumental noise

high.• Foreground

modeling requirements easier.

Foreground subtraction or foreground avoidance?

Take-home messages• A robust framework for the

quantification of errors is essential for a detection of the power spectrum.

• “Optimal” methods may be overly aggressive and susceptible to mis-modeling of foregrounds.

• Assuming that foregrounds are Gaussian-distributed may lead to an underestimation of errors.

• Foreground avoidance may be a more robust way forward.

Necessary ingredients for successful foreground mitigation

Ingredients for foreground mitigation

1. A power spectrum estimation framework that fully propagates error covariances.

Data

Foreground model

Model uncertai

nty

Fourier, binning

Bias removal

10-

110-

2

10-

1

100

101

100

10-

50

10-

100AL 2013, in prep.

10-

110-

2

10-

1

100

101

100

10-

50

10-

100AL 2013, in prep.

10-

110-

2

10-

1

100

101

100

10-

50

10-

100AL 2013, in prep.

Ingredients for foreground mitigation

1. A power spectrum estimation framework that fully propagates error covariances.• Window functions.• Covariant errors.

Along constant k-tracks, error properties differ

k~0.1

hMpc-1

k~0.4 hMpc-

1

k~3

hMpc-1

Ignoring error correlations can yield larger error bars or

mistaken detectionsR

elat

ive

erro

r ba

r in

crea

se

10-

110-

2 k [Mpc-1]100

101

-20%

0%20%

40%60%

80%

Dillon, AL, Williams et al. 2013, 1304.4229

Ingredients for foreground mitigation

1. A power spectrum estimation framework that fully propagates error covariances.• Window functions.• Covariant errors.

1. A power spectrum estimation framework that fully propagates error covariances.• Window functions.• Covariant errors.

2. A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101).

Ingredients for foreground mitigation

Foreground model

Model uncertai

nty

1. A power spectrum estimation framework that fully propagates error covariances.• Window functions.• Covariant errors.

2. A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101).

3. A method for propagating foreground properties through instrumental effects (e.g. chromatic beams).

Ingredients for foreground mitigation

10-

110-

2

10-

1

100

101

100

10-

50

10-

100AL 2013, in prep.

Ingredients for foreground mitigation

1. A power spectrum estimation framework that fully propagates error covariances.• Window functions.• Covariant errors.

2. A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101).

3. A method for propagating foreground properties through instrumental effects (e.g. chromatic beams).

Foreground subtraction or foreground avoidance?

Subtraction

Avoidance

Projection matrix, e.g.

delay transform

10-

110-

2

10-

1

102.

5

100

AL 2013, in prep.

101

Error(avoid)

Error(sub)10

0

10-

110-

2

10-

1

100

102.

5

100

AL 2013, in prep.

101

Error(avoid)

Error(sub)

AL 2013, in prep.

Subtraction

Avoidance

Leakage from mismodeled foregrounds more extended for subtraction than for avoidance

10-

1

10-

1

100

101

10-

50

10-

100AL 2013, in prep.

100Avoidanc

e

10-

2

Leakage from mismodeled foregrounds more extended for subtraction than for avoidance

10-

1

10-

1

100

101

AL 2013, in prep.

Subtraction

10-

50

10-

100

100

10-

2

Non-Gaussianity?

Foregrounds are highly non-Gaussian

de Oliveira-Costa 2008, MNRAS 388,

247

T

Log[

p(T

)]

Histogram

AL 2013, in prep.

0 1000

2000

10-

8

10-

6

10-

4

10-

2

T [K]

p(T)

Gaussian

Log-norm

Assuming Gaussianity doesn’t bias the estimator

Pick b to ensure cancellation

Assuming Gaussianity causes the error to be

underestimated

Assuming Gaussianity causes the error to be

underestimated

Take-home messages• A robust framework for the

quantification of errors is essential for a detection of the power spectrum.

• “Optimal” methods may be overly aggressive and susceptible to mis-modeling of foregrounds.

• Assuming that foregrounds are Gaussian-distributed may lead to an underestimation of errors.

• Foreground avoidance may be a more robust way forward.