Et4117 electrical machines and drives lecture10

Post on 26-Jun-2015

261 views 3 download

Tags:

Transcript of Et4117 electrical machines and drives lecture10

1Challenge the future

Overview Electrical Machines and

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits• 11-9 1.2-3: Magnetic circuits, Principles• 14-9 3-4.2: Principles, DC machines• 18-9 4.3-4.7: DC machines and drives• 21-9 5.2-5.6: IM introduction, IM principles• 25-9 Guest lecture Emile Brink• 28-9 5.8-5.10: IM equivalent circuits and characteristics• 2-10 5.13-6.3: IM drives, SM• 5-10 6.4-6.13: SM, PMACM• 12-10 6.14-8.3: PMACM, other machines• 19-10: rest, questions• 9-11: exam

2Challenge the future

Permanent magnet AC machines

(6.13)

• Introduction• Calculation example• Brushless DC motor (rectangular / trapezoidal waveforms)• PMSM (sinusoidal waveforms)• For these machine types

• Construction• Electromotive force• Voltage equations and equivalent circuit• Power balance• Force or torque

3Challenge the future

PM AC machine

4Challenge the future

Rotor layouts

1 surface mounted magnets• Ld≈Lq• L small because of

large air gap2 inset magnets

• Ld<Lq• reluctance torque

3 embedded magnets, radial magnetization

• Ld<Lq• reluctance torque

4 embedded magnets,circumferential magnetization

• flux concentration

5Challenge the future

Permanent magnet AC machines

(6.13)

• Introduction• Calculation example• Brushless DC motor (rectangular / trapezoidal waveforms)• PMSM (sinusoidal waveforms)• For these machine types

• Construction• Electromotive force• Voltage equations and equivalent circuit• Power balance• Force or torque

6Challenge the future

PM AC machine: calculation

example

• air gap radius rs

• axial length ls• magnet length lm• air gap length lg• number of turns Ns

• remanent flux density Brm

• recoil permeability µrm

• rotor speed ωm

Determine and sketch• air gap flux density in gap• flux linkage as a function of rotor

position• induced voltage

7Challenge the future

PM AC machine

8Challenge the future

PM AC machine

d dm mC S

H s J n Aτ⋅ = ⋅∫ ∫∫� �� �

� 022 =+ ggmm lHlH

d 0S

B n A⋅ =∫∫� �

rgrmm

mg B

ll

lB

µ+=

gm BB =

rmrmm BHB += µµ0

gg HB 0µ=

Using Ampère’s law:

Magnetic flux continuity

BH curve of magnet

BH curve of air

Result

9Challenge the future

PM AC machine

ssgs lrBNNBA πλ ==max

mssgspmpm lrBNft

E ωλλ24

d

dmaxmax ===

BlvEpm =max

For one phase without load:

10Challenge the future

Permanent magnet AC machines

(6.13)

• Introduction• Calculation example• Brushless DC motor (rectangular / trapezoidal waveforms)• PMSM (sinusoidal waveforms)• For these machine types

• Construction• Electromotive force• Voltage equations and equivalent circuit• Power balance• Force or torque

11Challenge the future

Construction: PMAC or BDCM

PMSM:• sinusoidal B• distributed windings• sinusoidal voltage• sinusoidal currents• continuous position sensor• smooth force

BDCM:• rectangular B• concentrated windings• trapezoidal voltage• rectangular currents• 6 step position sensor• force ripple

12Challenge the future

Brushless DC

machine

Name may be confusing

Idea:• PM excitation on rotor:

no brushes• mechanic commutator

replaced by converter

13Challenge the future

ec

eb

ia

ea

icπ ωt2π0

ib

Why trapezoidal voltage?

Brushless DC machine

14Challenge the future

Brushless DC machine operation

• Six step operation• Six times per revolution position information necessary

15Challenge the future

PM AC machine

ssgs lrBNNBA πλ ==max

mssgspmpm lrBNft

E ωλλ24

d

dmaxmax ===

BlvEpm =max

For one phase without load:

16Challenge the future

BDCM voltage equations

tRiu

d

dλ+=

+++=

+++=

+++=

)(

)(

)(

θλλθλλθλλ

pmcscsasbsabsasabsc

pmbscsabsbsasasabsb

pmascsabsbsabsasasa

iLiMiM

iMiLiM

iMiMiL

0=++ scsbsa iii

+=+−=

+=+−=

+=+−=

)()()(

)()()(

)()()(

θλθλλθλθλλθλθλλ

pmcscspmcscsabsasc

pmbsbspmbsbsabsasb

pmasaspmasasabsasa

iLiML

iLiML

iLiML

Maxwell, Faraday:

No star-point connection:

sabsas MLL −=

17Challenge the future

BDCM voltage equations

Single-phase equivalent circuit

Three-phase equivalent circuit

tRiu a

aa d

dλ+=

++=

++=

++=

pmcc

scc

pmbb

sbb

pmaa

saa

et

iLRiu

et

iLRiu

et

iLRiu

d

dd

dd

d

18Challenge the future

BDCM torque

Always two phases conducting:

IrlNBIEP

T sssgm

pm

m

42 max ===

ωωBlIrFrT ss ==

IEt

ILRIiuiuP pm

syyxx max

221

2 2d

d22 ++=+=

Electrical input power

Mechanical output power

Increase stored energy

Losses= + +

Torque:

Power balance gives same result as Lorentz

19Challenge the future

BDCM pros and cons

• Main problem:• Six times per period irregularities in the torque because

• Hall sensors different and positioned with limited accuracy• Motor coils are slightly different• The EMF (voltage induced by magnets) are different• Controller branches are different• Current can not be a square wave. Why not?

• Consequences• Not nice for position servo• Can be improved by hysteresis in Hall sensors

• Strengths BDCM• Simple controller with six step position sensor• Sensorless operation possible at higher speeds.

20Challenge the future

Permanent magnet AC machines

(6.13)

• Introduction• Calculation example• Brushless DC motor (rectangular / trapezoidal waveforms)• PMSM (sinusoidal waveforms)• For these machine types

• Construction• Electromotive force• Voltage equations and equivalent circuit• Power balance• Force or torque

21Challenge the future

Construction: PMAC or BDCM

PMSM:• sinusoidal B• distributed windings• sinusoidal voltage• sinusoidal currents• continuous position sensor• smooth force

BDCM:• rectangular B• concentrated windings• trapezoidal voltage• rectangular currents• 6 step position sensor• force ripple

22Challenge the future

PM AC machine

23Challenge the future

PM synchronous machine

24Challenge the future

PM synchronous machine

Cosinusoidal because of• skewing• end teeth

How can the voltage be calculated?

−Φ−=Φ

−Φ−=Φ

Φ−=Φ

)cos(ˆ

)cos(ˆ

)cos(ˆ

34

32

π

π

τπ

τπ

τπ

x

x

x

p

p

p

pmpmc

pmpmb

pmpma

25Challenge the future

PMSM voltage equations

Single-phase equivalent circuit

Three-phase equivalent circuit

tRiu a

aa d

dλ+=

++=

++=

++=

pmcc

scc

pmbb

sbb

pmaa

saa

et

iLRiu

et

iLRiu

et

iLRiu

d

dd

dd

ds sa sabL L M= −

pmacsabbsabasaa NiMiMiL Φ+++=λ

26Challenge the future

PMSM voltage equations

What should be the current phase to make maximum force?

)cos(ˆ xppmpma τ

πΦ−=Φ

−=

−=

=

)sin(ˆ

)sin(ˆ

)sin(ˆ

34

32

π

π

τπ

τπ

τπ

xee

xee

xee

p

p

p

pmpmc

pmpmb

pmpma

++=

++=

++=

pmcc

scc

pmbb

sbb

pmaa

saa

et

iLRiu

et

iLRiu

et

iLRiu

d

dd

dd

d

pmaas

pmacsabbsabasaa

NiL

NiMiMiL

Φ+=

Φ+++=λ

27Challenge the future

PMSM currentsI1i

I2i

I3i

E1i

E2i

E3i

−=

−=

=

)sin(ˆ

)sin(ˆ

)sin(ˆ

34

32

π

π

τπ

τπ

τπ

xii

xii

xii

p

p

p

c

b

a

28Challenge the future

PMSM power and force

iNv

ie

v

pF pm

p

pmmech ˆˆ2

3

2

ˆˆ3Φ===

τπ

ccbbaa iuiuiup ++=

Maximum three-phase force:

Voltage t

x

p dd

τπω =22 )ˆ()ˆˆ(ˆ iLNiRu pm ωω +Φ+=

cpmcbpmbapmacba

cba ieieiet

iiiLRiRiRip ++++++++=

d

)(d 22221

222

mechfCupmf pppie

t

WiRp ++=++= ˆˆ

2

3

d

dˆ2

3 2

29Challenge the future

Example: Archimedes Wave Swing

30Challenge the future

Linear AWS

generator

31Challenge the future

Linear generator AWS

32Challenge the future

Measure

ment

33Challenge the future

Permanent magnet AC machines

(6.13)

• Introduction• Calculation example• Brushless DC motor (rectangular / trapezoidal waveforms)• PMSM (sinusoidal waveforms)• For these machine types

• Construction• Electromotive force• Voltage equations and equivalent circuit• Power balance• Force or torque

34Challenge the future

Overview Electrical Machines and

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits• 11-9 1.2-3: Magnetic circuits, Principles• 14-9 3-4.2: Principles, DC machines• 18-9 4.3-4.7: DC machines and drives• 21-9 5.2-5.6: IM introduction, IM principles• 25-9 Guest lecture Emile Brink• 28-9 5.8-5.10: IM equivalent circuits and characteristics• 2-10 5.13-6.3: IM drives, SM• 5-10 6.4-6.13: SM, PMACM• 12-10 6.14-8.3: PMACM, other machines• 19-10: rest, questions• 9-11: exam