Engineering Drives Performance · 2020. 11. 14. · Engineering Drives Performance: Design Elements...

Post on 15-Mar-2021

1 views 0 download

Transcript of Engineering Drives Performance · 2020. 11. 14. · Engineering Drives Performance: Design Elements...

Engineering Drives Performance:

Design Elements of the Biotronik Orsiro Drug Eluting Stent

Peter Monteleone MD, FACC, FSCAI

11.2020

Orsiro Ultrathin Strut (BP‐SES) Clinical Evidence – Selected Trials

For internal use only.

Orsiro Competitor

Why???

innovation..

innovation..

seatbelt legislation

seatbelt legislationairbag implementation, 55 mph national speed limit

seatbelt legislationairbag implementation, 55 mph national speed limit

NHTSA crashworthiness vehicle ratings

seatbelt legislationairbag implementation, 55 mph national speed limit

NHTSA crashworthiness vehicle ratingstexting!!

stentingdrug eluting stent

cobalt chromium

HYPOTHETICAL

freedom from TLF

year

HYPOTHETICAL

freedom from TLF

year

Why?

Biotronik Orsiroengineering OPTIMIZATION

Biotronik Orsiroengineering OPTIMIZATION

• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

Biotronik Orsiroengineering OPTIMIZATION

• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

EES Abbott Xience VSES Cordis Cypher Select +

EES Abbott Xience VSES Cordis Cypher Select +

EES Abbott Xience VSES Cordis Cypher Select +

SORT‐OUT IV

BIOFLOW V

Biotronik Orsiroengineering OPTIMIZATION

• sirolimus• though a well proven drug for DES• the benefit of Orsiro “is (probably) not about the drug…”

Biotronik Orsiroengineering OPTIMIZATION

• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

ultrathin struts• PRO‐Kinetic Energy BMS scaffold• Cobalt‐chromium L605• “ultrathin”

• 60 micrometers for stents <=3.0 mm in diameter• 80 micrometers for stent diameters >3.0 mm

• 81 Abbott Xience• 74 Boston Scientific's Synergy • 81 Medtronic Resolute Onyx is 81

• 1. BIOTRONIK Data on file• *Synergy is a registered trademark of Boston Scientific.• Disclaimer: Information on devices manufactured at companies other than BIOTRONIK was gathered from multiple sources. However, it has not been verified by the vendors 

and we cannot guarantee its accuracy.

Double Helix Stent Design for a Smooth Outer Contour and Improved Flexibility

26

Smooth outer contour

Two helical meandersExcellent flexibility andsmooth crimped profile

Wedge shaped transitionsConsistent scaffolding through entire stent

Ring elementDefined stent length

Three longitudinal connectors per helixDesigned to minimize foreshortening and resist longitudinal compression

Orsiro

SynergyBoston Scientific

ultrathin struts • Preclinical studies demonstrate a 1.5x increase in thrombogenicity of thick-strut

stents (162 micrometer) versus identical thinner strut stents (81 micrometer). 1,2

• In vivo, flow stagnation and neointimal fibrin deposition drive a 60% increase in thrombus formation and neointimal fibrin deposition at 3 days in thick versus thin strut stent systems.2

• Stent endothelialization occurs faster with thin struts likely due simply to a smaller area needed requiring coverage. 1,3

• Thick-strut scaffolds induce greater inflammation, vessel injury, internal elastic lamina disruption, in-stent neointmal growth and hyperplasia. 1,4,5

• ISAR-STEREO-1 and 2 demonstrated that angiographic and clinical restenosis could be reduced with utilization of thin strut stents.6,7

engineering OPTIMIZATION• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

BIOlute active coating• The outermost cover of the Orsiro stent is the BIOlute active coating made of biodegradable poly‐L‐lactic acid (PLLA) loaded with sirolimus

• PLLA undergoes metabolism via the Krebs cycle into carbon dioxide and water, and completely degrades over 12–15 months

• The slow degradation of PLLA allows for the controlled release of sirolimus

• It is this attribute that categorizes the Orsiro device as a biodegradable polymer DES

BIOlute active coating• Histopathology studies demonstrate decreased inflammation, improved re‐endothelialization, reduced neointimal growth and adequate drug sirolimus tissue concentration with PLLA biodegradable by comparison to permanent polymer‐based sirolimus‐eluting platforms 

• Direct comparative clinical studies remain to be completed

Koppara T, Joner M, Bayer G, Steigerwald K, Diener T, Wittchow E. Histopathological comparison of biodegradable polymer and permanent polymer based sirolimus eluting stents in a porcine model of coronary stent implantation. Thromb Haemost. 2012;107(6):1161‐1171.

• 1. BIOTRONIK data on file.• 2. TittelbachM, Diener T. Orsiro – The First Hybrid Drug‐eluting Stent, Opening Up a New Class of Drug‐eluting Stents for Superior Patient Outcomes. Interventional Cardiology. 2011; 6(2): 1‐5. 

Coating Composition

1) Controlled drug release1,2

• Drug elution from BIOlute starts immediately following implantation 

• Majority of sirolimus is released within three months

• Nearly complete elution is achieved within 1 year

2) Bioabsorption1,2

• The BIOlute drug matrix is gradually absorbed by the body 

• A substantial amount of the polymer is degraded within two years

Controlled drug release, gentle absorption and low ion release

engineering OPTIMIZATION• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

• 1. BIOTRONIK data on file.• 2. TittelbachM, Diener T. Orsiro – The First Hybrid Drug‐eluting Stent, Opening Up a New Class of Drug‐eluting Stents for Superior Patient Outcomes. Interventional Cardiology. 2011; 6(2): 1‐5. 

Coating Composition

3) Inert backbone1,2

• proBIO passive coating encapsulates the stent, reducing interaction between the metal stent and the surrounding tissue

• In vitro studies have shown up to a 98% reduction of metal ion release when the stent surface is coated with proBIO

Controlled drug release, gentle absorption and low ion release

proBIO passive coating• 80 nanometer-thin layer seals the scaffold surface and eliminates

interaction between the metal and the surrounding tissue of the treated artery

• composed of an amorphous hydrogen-rich silicon carbide that is deposited onto the stent through a plasma-enhanced chemical vapor deposition technique that bonds the inert coating to the metal surface

• lowers the rate of corrosion of the stent and decreases tissue inflammation including from allergic reactions to the metal.

• the semi-conductive silicon carbide coating has demonstrated up to a 98% reduction of allergenic metal ion release

• ProBIO coating does not biodegrade and is thus considered passive

TM

1. Rzany A, et al. Smart Material Silicon Carbide: Reduced Activation of Cells and Proteins on a‐SiC:H‐coated Stainless Steel. Progress in Biomedical Research 2001; May: 182‐194

proBIO Passive Coating

50.8

14.9

6.40.9

0

10

20

30

40

50

60

CoNi PtCr CoCr CoCr withproBIO

Mass o

f Nickel release per su

rface area

 [ng/cm

2 ]

-98%

-94%

-68%

Reduced nickel ion release compared to other stent platforms1

engineering OPTIMIZATION• sirolimus• ultrathin struts• BIOlute active coating• ProBIO passive coating• catheter characteristics

delivering the engineering• Longer length monorail catheter redesign versus 

competitor devices• Improved “push,” “cross” and “crossing profile”

Kalnins U, Erglis A, Dinne I, Kumsars I, Jegere S. Clinicaloutcomes of silicon carbide coated stents in patients withcoronary artery disease. Med Sci Monit. 2002;8(2):PI16‐20.

BIOTRONIK data on file. IIB (P) 24/2018.

44.0

36.4

29.7

51.2

20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0

Better Push

• 1. BIORONIK data on file. IIB (P) 24/2018 

OrsiroBIOTRONIK

Resolute OnyxMedtronic

SynergyBoston Scientific

Xience SierraAbbott

Better Push72%

+72%

Transmits up to 72% more force from hub to tip1

Relative force transmitted (%)

Easier Cross

0.14

0.15

0.24

0.05

0.00 0.05 0.10 0.15 0.20 0.25 0.30Resistance (N)

-79%Orsiro

BIOTRONIK

SynergyBoston Scientific

Resolute OnyxMedtronic

Xience SierraAbbott

Less Force79%

Up to 79% less force needed to successfully cross demanding anatomies1

Lower Crossing Profile 

Improved acute performance – up to 7% lower crossing profile1

1.01

1.01

1.02

0.95

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04Crossing profile (mm)

-7%Orsiro

BIOTRONIK

Resolute OnyxMedtronic

SynergyBoston Scientific

Xience SierraAbbott

Lower Crossing Profile7%

HYPOTHETICAL

freedom from TLF

year

• 153 clinical sites• 21 states and Washington DC

CV Service Line

• * TLF components as per respective definitions in trials.

Orsiro Ultrathin Strut (BP‐SES) Clinical Evidence – Selected Trials

Randomized controlled trials Bioabsorbable Polymer (BP) SES compared to Durable Polymer (DP) EES/ZES

For internal use only.

• Absolute risk reduction = 1.6%• NNT = 63• For Ascension’s 8181 annual STEMI

volume that would mean 130 TLF prevented in 1 year in the highest risk PCI cohort of STEMI

• * TLF components as per respective definitions in trials.

Orsiro Ultrathin Strut (BP‐SES) Clinical Evidence – Selected Trials

Randomized controlled trials Bioabsorbable Polymer (BP) SES compared to Durable Polymer (DP) EES/ZES

For internal use only.

• Absolute risk reduction = 3.4%• NNT = 29• For Ascension’s 16212 annual PCI

volume that would mean 559 TLF prevented in 1 year

72yoM presented with lateral STEMI

Residual serial LAD lesions staged

12.6.19

OCT

2.5x26 Orsiro DES

2.5x12 NC post-dilatation

3.0x35 Orsiro DES proximal LAD

Post OCT

3.0x12 NC post-dilatation distal stent

4.0x12 NC post-dilatation proximal

thank you!

references1. Iglesias JF, Roffi M, Degrauwe S, et al. Orsiro cobalt‐chromium sirolimus‐eluting stent: present and future perspectives. Expert Rev Med Devices. 2017;14(10):773‐788.2. Prabhu S, Schikorr T, Mahmoud T, Jacobs J, Potgieter A, Simonton C. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents. EuroIntervention. 2012;8(2):275‐281.3. Barragan P, Garitey V, Mouneimne K, Rieu R. Longitudinal compression behaviour of coronary stents: a bench‐top comparative study. EuroIntervention. 2014;9(12):1454‐1462.4. Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high‐risk interventional settings is driven by stent design and deployment and protected by polymer‐drug coatings. Circulation. 2011;123(13):1400‐1409.5. Soucy NV, Feygin JM, Tunstall R, et al. Strut tissue coverage and endothelial cell coverage: a comparison between bare metal stent platforms and platinum chromium stents with and without everolimus‐eluting coating. EuroIntervention. 2010;6(5):630‐637.6 Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002;105(25):2974‐2980.7. Timmins LH, Miller MW, Clubb FJ, Jr., Moore JE, Jr. Increased artery wall stress post‐stenting leads to greater intimal thickening. Lab Invest. 2011;91(6):955‐967.