ELC N205: Electromagnetics 1 TutorialsClick to edit ELC N205 © Mohamed O. Ashour 2017 Slide 4...

Post on 03-Jan-2021

4 views 0 download

Transcript of ELC N205: Electromagnetics 1 TutorialsClick to edit ELC N205 © Mohamed O. Ashour 2017 Slide 4...

ELC N205: Electromagnetics 1Tutorials

Department of Communications and Computer Engineering

Introduced By:

Eng. Mohamed Ossama AshourE-mail: vert4231@gmail.com

Fall 2020

Agenda

ELC N205 © Mohamed O. Ashour 2017 Slide 2

• Uniform Plane waves

• Solutions of wave equations in free space

• Uniform Plane waves characteristics

➢ In free space

➢ In lossless medium

• Polarization

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 3

Uniform Plane waves

Uniform Field components vary in one direction & time.

Plane Field has the same direction, same magnitude, and same phase in infinite planes perpendicular to the direction of propagation.

Definition

So, if we assume the wave propagation direction to be in z-direction, we get:

&𝜕

𝜕𝑥&𝜕

𝜕𝑦(E,H) = 0

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 4

Solutions of wave equations in free spaceIf we assume the wave propagation direction to be in z-direction.

𝐸 𝑧, 𝑡 = 𝐸𝑥+ 𝑒𝑗 (ω𝑡 −𝑘𝑧) 𝑢𝑥 + 𝐸𝑦

+ 𝑒𝑗 (ω𝑡 −𝑘𝑧+ 𝜙) 𝑢𝑦= 𝐸𝑜𝑒

𝑗 (ω𝑡 −𝑘𝑧)

where, 𝐸𝑜 = 𝐸𝑥+𝑢𝑥 + 𝐸𝑦

+ 𝑒𝑗𝜙 𝑢𝑦K ≝ wavenumber = 𝜙 ≝ phase difference between the x & y components

𝐻 𝑧, 𝑡 =1

𝜂𝑜(𝐸𝑥

+ 𝑒𝑗 (ω𝑡 −𝑘𝑧) 𝑢𝑦 − 𝐸𝑦+ 𝑒𝑗 (ω𝑡 −𝑘𝑧+ 𝜙) 𝑢𝑥)

where, 𝜂𝑜 ≝ Intrinsic Impedance =

oo /

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 5

Solutions of wave equations in free spaceGenerally, for a wave propagating in 𝑢𝑝 direction.

𝐸 𝑅, 𝑡 = 𝐸𝑜𝑒𝑗 (ω𝑡 −𝑘.𝑅)

where,

𝐻 𝑅, 𝑡 =1

𝜂𝑜( 𝑢𝑝∗ 𝐸𝑜) 𝑒

𝑗 (ω𝑡 −𝑘.𝑅)

Finally,

zzyyxx ukukukk ++=

zyx uzuyuxR ++=

)(1

)( REuRH n =

nuRHRE = )()(

HE

pu

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 6

Uniform Plane waves characteristics

QuantityType of medium

Free space(μ=μo, Ɛ=Ɛo, σ=0) Lossless(μ=μoμr, Ɛ=ƐoƐr, σ=0)

Phase constant(wave number)

ω μo Ɛo =ω

co ω μ Ɛ =ω μr Ɛr

coImpedance μo / Ɛo = 𝟏𝟐𝟎𝝅 μ / Ɛ = 𝟏𝟐𝟎𝝅 μr / Ɛr

Wavelength 2π/K 2π/K

Period 2π/ω 2π/ω

Phase velocity Co Co / μr Ɛr

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 7

Polarization

The polarization of a uniform plane wave describes the time-varying behavior of the electric field intensity vector at a given point in space.

Definition

1) Linear Polarization 2) Circular Polarization 3) Elliptical Polarization

Types

𝐸 𝑧, 𝑡 = 𝐸𝑥+ 𝑒𝑗 (ω𝑡 −𝑘𝑧) 𝑢𝑥 + 𝐸𝑦

+ 𝑒𝑗 (ω𝑡 −𝑘𝑧+ 𝜙) 𝑢𝑦

Note: To determine the polarization, you must write the electric field in the form of 2 components perpendicular to each other & perpendicular to the propagation direction.

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 8

Linear Polarization

𝐸 𝑧 = 𝐸𝑥+ 𝑒−𝑗𝑘𝑧 𝑢𝑥 𝐸 𝑧 = 𝐸𝑦

+ 𝑒−𝑗(𝑘𝑧−𝜙) 𝑢𝑦

𝐸 𝑧 = 𝐸𝑥+ 𝑒−𝑗𝑘𝑧 𝑢𝑥 + 𝐸𝑦

+ 𝑒−𝑗𝑘𝑧 𝑢𝑦 𝐸 𝑧 = 𝐸𝑥+ 𝑒−𝑗𝑘𝑧 𝑢𝑥 + 𝐸𝑦

+ 𝑒−𝑗(𝑘𝑧±𝜋) 𝑢𝑦

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 9

Circular Polarization

𝐸 𝑧 = 𝐸𝑜 𝑒−𝑗𝑘𝑧 𝑢𝑥 + 𝐸0 𝑒

−𝑗(𝑘𝑧±𝜋

2) 𝑢𝑦

𝐸 𝑧 = (𝐸𝑜 𝑢𝑥 − 𝑗𝐸0 𝑢𝑦) 𝑒−𝑗𝑘𝑧

𝐸 𝑧 = (𝐸𝑜 𝑢𝑥 + 𝑗𝐸0 𝑢𝑦) 𝑒−𝑗𝑘𝑧

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 10

Elliptical Polarization

𝐸 𝑧 = 𝐸𝑥+ 𝑒−𝑗𝑘𝑧 𝑢𝑥 + 𝐸𝑦

+ 𝑒−𝑗(𝑘𝑧±𝜙) 𝑢𝑦

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 11

Exercise I

1)

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 12

Exercise I

2)

3)

(Assignment)

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 13

Extra Problems

1)

2)

3)

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 14

Extra Problems Solutions

1)

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 15

Extra Problems Solutions

2)

Click to edit

ELC N205 © Mohamed O. Ashour 2017 Slide 16

Extra Problems Solutions

3)