ELASTIC PROPERTIES OF NANOTUBES

Post on 31-Dec-2015

36 views 3 download

Tags:

description

ELASTIC PROPERTIES OF NANOTUBES. Nanotube learning seminar series SZFKI. B.Sas, T. Williams 12 September 2005. HOW TO LEARN ABOUT ELASTICITY OF CNT. • Approaches 1. Experimental: i) “Macroscopic” mechanical measurements ii) Microscopic spectroscopic measurements 2. Modelling: - PowerPoint PPT Presentation

Transcript of ELASTIC PROPERTIES OF NANOTUBES

ELASTIC PROPERTIES OF NANOTUBES

Nanotube learning seminar series

SZFKI

B.Sas, T. Williams 12 September 2005

HOW TO LEARN ABOUT ELASTICITY OF CNT

• Approaches

1. Experimental:i) “Macroscopic” mechanical measurementsii) Microscopic spectroscopic measurements

2. Modelling:i) Continuum elasticityii) Phonon dispersion and anharmonicity

3. Comparison with ab initio calculation

GPa

δL/L %0

0 -

30 -

10

σzz

E=350GPa

• Tensile Loading of Ropes of SWNTs (Yu et al PRL 2000)

E=1000GPa

F=0 F=f

δWp=δWel

fδL=∫σxxuxxdS= 2 πRLσxx δL/L

2-D ELASTICITY

2πR

L L+δL

2R

δR Uniaxial force

L

x σxx=f/2πR

y

x

σxx=f/2πR

σP=(K-μ)/(K+μ)E=4K μ/(K+ μ)

Euxx= σxx

uyy= δR/R= -σP uxx

E3-D=E2-D /wall thickness

BENDING MODEL

d2R

F=0 F=f

dL

R

24

Ef

3

D2

2d

2

compression

dilatation

L

(2-D Elasticity)

[E3-DE2-D/wall thickness]

F [nN]

d [nm]

2 -

4 -

E3-D=1000GPaE2-D=300Nm-1

COMPARISON WITH STEEL

Young mod E3-D

Strain limitstress limitfilling factordensity stress limit cable

[GPa][%][GPa][%][g cm-2][Kg force mm-2]

STEEL1000.10.1100810

CNT100010100500.65000

Hung byΦ500μmCNT thread

Micro-Mechanical Manipulations

• Rotational actuators based on carbon nanotubes (Nature, 2003.) Electrostatic motor.

RAMAN EFFECT FOR BEGINNERS I

α,ωph

ω0 ω0

ω0-ωph

excitation Eincosω0t

tcosωEtcosωuu

ααp 0inPnPn

0dipole emissioncosω0t , cos(ω0±ωPn)t

(ω0- ωPn) ω0 (ω0+ωPn)ω0

25000cm-124000cm-1

Graphene phonons

RAMAN FOR BEGINNERS II

xm,e

Eincosω0t κ=mω2el ħω0

ħωel

tm

ee

el02

02

2

cos

inExpDipole:

g

u

tm

ee

Egxu

egexuueExg

elel

elel

00

22

0

2

2

0

cos

22

inEp

p

elmxgxu

222

tuu

uuu

uu

staticPn

PnPnstatic

el

0cos

CLASSICAL QUANTUM

RAMAN III

APPLIED STRESS

ustatic≠0 ⇒ intensity change by δωel

⇒ reveals by δωPn

⇒ lifts phonon mode degeneracies by symmetry reduction

2

2

u

rV

u

Ustatic=0

ustatic≠0

Eg

A2u

Sanchez-Portal et al.m = 0 1 2 3 4

L L-δL

2R

δR

P=0 P=p

δWp=δWel

πR2pδL=∫σxxuxxdS= 2 πRLσxx δL/L

2πRLpδR=∫σyyuyydS=2 πRL σyyδR/R

σxx=pR/2 σyy=pR

uyy/uxx=2 if σP=0

2-D ELASTICITY Hydrostatic pressureCapped ends

2πR

L

x

y

σxx

σyy

σxx=pR/2 ; σyy=0uxx=pR/2E ; uyy=-σPpR/2E

σxx=0 ; σyy=pRuxx=-σPpR/E; uyy=pR/E

+

=

σxx=pR/2 ; σyy=pRuxx=(1-2σP)pR/2E ; uyy=(2-σP)pR/2E

x

y

σxx

σyy

2πR

L

2-D ELASTICITY Hydrostatic pressure P=pCapped ends

uyy/uxx = (2-σP)/(1-2σP)