Economic optimization in Model Predictive Control

Post on 19-Jan-2022

6 views 0 download

Transcript of Economic optimization in Model Predictive Control

Economic optimization in Model Predictive Control

Rishi Amrit

Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison

29th February, 2008

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 1 / 37

Outline

1 Incentives for process control

2 Preliminaries

3 Motivating the idea

4 Current work

5 Future work

6 Conclusions

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 2 / 37

Incentives for process control

Incentives for process control

Production specifications

Operational constraints / Environmental regulations

Safety

Economics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 3 / 37

Incentives for process control

Incentives for process control

Production specifications

Operational constraints / Environmental regulations

Safety

Economics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 3 / 37

Incentives for process control

Incentives for process control

Production specifications

Operational constraints / Environmental regulations

Safety

Economics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 3 / 37

Incentives for process control

Incentives for process control

Production specifications

Operational constraints / Environmental regulations

Safety

Economics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 3 / 37

Incentives for process control Economic incentive

Economic Incentive

Production of a plant depends heavily on plant’s limitations andoperating constraints

Operating conditions keep changing plant production

Under all variations and restrictions, plant must do the best it can:Process optimization

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 4 / 37

Incentives for process control Economic incentive

Global production maximum

���������������������������������

���������������������������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

$ Loss

Process parameter Time

Profit ($)

Profit ($)$ Loss

���������������������������������

���������������������������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

$ Loss

Process parameter Time

Profit ($)

Profit ($)$ Loss

Higher profit expected whenband of variation is reduced

Allows operation at/near theoptimum for more time

Smoother operation =⇒Higher profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 5 / 37

Incentives for process control Economic incentive

Global production maximum

���������������������������������

���������������������������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

$ Loss

Process parameter Time

Profit ($)

Profit ($)$ Loss

���������������������������������

���������������������������������

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

$ Loss

Process parameter Time

Profit ($)

Profit ($)$ Loss

Higher profit expected whenband of variation is reduced

Allows operation at/near theoptimum for more time

Smoother operation =⇒Higher profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 5 / 37

Incentives for process control Economic incentive

Maximum production at bound

�����������������������������������������������������������������������������

�����������������������������������������������������������������������������

���������������������������������

���������������������������������

Profit ($)$ Loss

Profit ($)

$ Loss

Process parameter Time

Higher profit when band ofvariation is reduced

Allows operation at/near theoptimum for more time

Smoother operation =⇒Higher profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 6 / 37

Incentives for process control Economic incentive

$$ Savings !

Better ControlPoor Control

Profit

Higher fluctuations: Poor disturbance rejection

Forces the mean operating state to be away from optimum to meetthe constraints

Solution: Reduce fluctuations and go nearer to the optimal

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 7 / 37

Preliminaries Process model

Process model

Processu x

y

Process model governing process dynamics

dx

dt= f (x(t), u(t))

y(t) = g(x(t))

Steady state:

f (xs , us) = 0

ys = g(xs)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 8 / 37

Preliminaries Process model

Process model

Processu x

y

Process model governing process dynamics

dx

dt= f (x(t), u(t))

y(t) = g(x(t))

Steady state:

f (xs , us) = 0

ys = g(xs)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 8 / 37

Preliminaries Process model

Process model

Processu x

y

Process model governing process dynamics

dx

dt= f (x(t), u(t))

y(t) = g(x(t))

Steady state:

f (xs , us) = 0

ys = g(xs)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 8 / 37

Preliminaries Process model

Objective translation

Economic objectives are translated into process control objectives

Notion of setpoints / targets

Economic profit functionΦ(x ,u)

Economic optimumu

x

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 9 / 37

Preliminaries Process model

Objective translation

Economic objectives are translated into process control objectives

Notion of setpoints / targets

Economic profit functionΦ(x ,u)

Economic optimumu

x

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 9 / 37

Preliminaries Process model

Objective translation

Economic objectives are translated into process control objectives

Notion of setpoints / targets

Economic profit functionΦ(x ,u)

Economic optimumu

x

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 9 / 37

Preliminaries Process model

Objective translation

Economic objectives are translated into process control objectives

Notion of setpoints / targets

Economic profit functionΦ(x ,u)

Economic optimumu

x

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Economic profit functionΦ(x ,u)

Economic optimumu

xConstraints

Target

Steady state curvef (xs ,us) = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 9 / 37

Preliminaries Model Predictive Control

Model Predictive Control

Output target

Measured Input

Measured Output

Control/Prediction Horizon

k

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATIONk k + 1

uk

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATION

Predicted Output

k k + 1

uk

uk+1

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 10 / 37

Preliminaries Model Predictive Control

Model Predictive Control

Output target

Measured Input

Measured Output

Control/Prediction Horizon

k

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATIONk k + 1

uk

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATION

Predicted Output

k k + 1

uk

uk+1

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 10 / 37

Preliminaries Model Predictive Control

Model Predictive Control

Output target

Measured Input

Measured Output

Control/Prediction Horizon

k

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATIONk k + 1

uk

Output target

Measured Input

Measured Output

Control/Prediction Horizon

Optimized Future Input Trajectory

REGULATION

Predicted Output

k k + 1

uk

uk+1

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 10 / 37

Preliminaries MPC Optimization problem

Problem definition

Get to the steady economic optimum (target): Minimize the distancefrom the target (stage cost)

L(x,u) = (x − xt)′Q(x − xt) + (u − ut)′R(u − ut)

Minimize the stage cost summed over a chosen control horizon(number of moves into the future: N)

minu

N−1∑i=0

L(x,u)

subject to the process model

xk+1 = Axk + Buk

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 11 / 37

Preliminaries MPC Optimization problem

Problem definition

Get to the steady economic optimum (target): Minimize the distancefrom the target (stage cost)

L(x,u) = (x − xt)′Q(x − xt) + (u − ut)′R(u − ut)

Minimize the stage cost summed over a chosen control horizon(number of moves into the future: N)

minu

N−1∑i=0

L(x,u)

subject to the process model

xk+1 = Axk + Buk

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 11 / 37

Preliminaries Implementation strategies

Current practice: RTO

Validation

Plant

Controllers

Planning and Scheduling

Reconciliation

Model UpdateOptimizationSteady State

Real time optimization

Two layer structure used toaddress economically optimalsolutionRTO generated setpointspassed to lower level controllerControllers try to “track” thetargets provided to it

Drawbacks

Lower sampling rateAdaptation of operatingconditions is slowConsequence: Loss ineconomics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 12 / 37

Preliminaries Implementation strategies

Current practice: RTO

Validation

Plant

Controllers

Planning and Scheduling

Reconciliation

Model UpdateOptimizationSteady State

Real time optimization

Two layer structure used toaddress economically optimalsolutionRTO generated setpointspassed to lower level controllerControllers try to “track” thetargets provided to it

Drawbacks

Lower sampling rateAdaptation of operatingconditions is slowConsequence: Loss ineconomics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 12 / 37

Preliminaries Implementation strategies

Current practice: RTO

Validation

Plant

Controllers

Planning and Scheduling

Reconciliation

Model UpdateOptimizationSteady State

Real time optimization

Two layer structure used toaddress economically optimalsolutionRTO generated setpointspassed to lower level controllerControllers try to “track” thetargets provided to it

Drawbacks

Lower sampling rateAdaptation of operatingconditions is slowConsequence: Loss ineconomics

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 12 / 37

Motivating the idea

Motivating the idea

-4 -2 0 2 4-4

-20

24

Profit

Input (u)

State (x)

Profit

-4 -2 0 2 4-4

-20

24

Profit

Input (u)

State (x)

Profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 13 / 37

Motivating the idea

Motivating the idea

-4 -2 0 2 4-4

-20

24

Profit

Input (u)

State (x)

Profit

-4 -2 0 2 4-4

-20

24

Profit

Input (u)

State (x)

Profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 13 / 37

Motivating the idea

����������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������

Profit ($)

$ Profit

Maximum profit

Global economic optimum not being a steady state introduces highpotential areas of transient operation

Translation of economic objective to control objective loses theinformation about maximum profit possible

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 14 / 37

Motivating the idea

Motivating the idea

What is not the primary objective of feedback control

Tracking setpoints or targetsTracking dynamic setpoint changes

Setpoints/Targets: Translating economic objectives to process controlobjectives

Process Economics

Steady state economics

Process Economics

Loss of economic information dueto two layer approach

Control objective:

L(x,u) = (x− xt)′Q(x− xt)

+(u− ut)′R(u− ut)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 15 / 37

Motivating the idea

Motivating the idea

What is not the primary objective of feedback control

Tracking setpoints or targetsTracking dynamic setpoint changes

Setpoints/Targets: Translating economic objectives to process controlobjectives

Process Economics

Steady state economics

Process Economics

Loss of economic information dueto two layer approach

Control objective:

L(x,u) = (x− xt)′Q(x− xt)

+(u− ut)′R(u− ut)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 15 / 37

Motivating the idea

Motivating the idea

What is not the primary objective of feedback control

Tracking setpoints or targetsTracking dynamic setpoint changes

Setpoints/Targets: Translating economic objectives to process controlobjectives

Process Economics

Steady state economics

Process Economics

Loss of economic information dueto two layer approach

Control objective:

L(x,u) = (x− xt)′Q(x− xt)

+(u− ut)′R(u− ut)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 15 / 37

Motivating the idea

Motivating the idea

What is not the primary objective of feedback control

Tracking setpoints or targetsTracking dynamic setpoint changes

Setpoints/Targets: Translating economic objectives to process controlobjectives

Process Economics

Steady state economics

Process Economics

Loss of economic information dueto two layer approach

Control objective:

L(x,u) = (x− xt)′Q(x− xt)

+(u− ut)′R(u− ut)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 15 / 37

Motivating the idea

Motivating the idea

What is not the primary objective of feedback control

Tracking setpoints or targetsTracking dynamic setpoint changes

Setpoints/Targets: Translating economic objectives to process controlobjectives

Process Economics

Steady state economics

Process Economics

Loss of economic information dueto two layer approach

Control objective:

L(x,u) = −P(x,u)

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 15 / 37

Motivating the idea

Make money or chase target ?

Due to disturbances and constraints, the economic optimum is not asteady state in general

System stabilizes at the steady target estimated from the steady stateoptimization

During system transients, system may or may not pass through theeconomic optimum

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 16 / 37

Motivating the idea

The contest

The closer the system gets to the economic optimum, the moreprofitable it is

Who gets closest to the global economic optimum ?

Tracking controllers: Rush to the target (away from non steadyeconomic optimum)Tracking speed chosen through penalties, but still the objective remainsto drive away from non steady economic optimum !

Economics optimizing controller: Expected to get closer to theoptimum with eventual setting at the steady target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 17 / 37

Motivating the idea

The contest

The closer the system gets to the economic optimum, the moreprofitable it is

Who gets closest to the global economic optimum ?

Tracking controllers: Rush to the target (away from non steadyeconomic optimum)

Tracking speed chosen through penalties, but still the objective remainsto drive away from non steady economic optimum !

Economics optimizing controller: Expected to get closer to theoptimum with eventual setting at the steady target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 17 / 37

Motivating the idea

The contest

The closer the system gets to the economic optimum, the moreprofitable it is

Who gets closest to the global economic optimum ?

Tracking controllers: Rush to the target (away from non steadyeconomic optimum)Tracking speed chosen through penalties, but still the objective remainsto drive away from non steady economic optimum !

Economics optimizing controller: Expected to get closer to theoptimum with eventual setting at the steady target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 17 / 37

Motivating the idea

The contest

The closer the system gets to the economic optimum, the moreprofitable it is

Who gets closest to the global economic optimum ?

Tracking controllers: Rush to the target (away from non steadyeconomic optimum)Tracking speed chosen through penalties, but still the objective remainsto drive away from non steady economic optimum !

Economics optimizing controller: Expected to get closer to theoptimum with eventual setting at the steady target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 17 / 37

Current work Quadratic economics

A motivating formulation

A

A, B

V

F , CAf

A→ B

Consider a CSTR

VdCA

dt= F (CAf − CA)− kCAV

VdCB

dt= F (CBf − FCB) + kCAV

States: CA,CB Input: F

The simplest form of profit:

P = αAF (CA − CAf ) + αBF (CB)

=[CA CB

] [αA

αB

]′F− αACAf F

αA: Cost of A αB : Cost of BState-Input Cross term !

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 18 / 37

Current work Quadratic economics

A motivating formulation

A

A, B

V

F , CAf

A→ B

Consider a CSTR

VdCA

dt= F (CAf − CA)− kCAV

VdCB

dt= F (CBf − FCB) + kCAV

States: CA,CB Input: F

The simplest form of profit:

P = αAF (CA − CAf ) + αBF (CB)

=[CA CB

] [αA

αB

]′F− αACAf F

αA: Cost of A αB : Cost of BState-Input Cross term !

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 18 / 37

Current work SISO Example

Example: Single input single output

Consider a linear system

xk+1 = 0.3xk + uk

Profit function: −3x2k − 5u2

k−2xkuk + 98xk + 80uk

Objective: Maximize Profit !

Scheme one:

Evaluate the best economic target at every sample time (RTO)Controller tracks the target given to it

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 19 / 37

Current work SISO Example

Example: Single input single output

Consider a linear system

xk+1 = 0.3xk + uk

Profit function: −3x2k − 5u2

k−2xkuk + 98xk + 80uk

Objective: Maximize Profit !

Scheme one:

Evaluate the best economic target at every sample time (RTO)Controller tracks the target given to it

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 19 / 37

Current work SISO Example

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 20 / 37

Current work SISO Example

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 20 / 37

Current work SISO Example

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state line

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 20 / 37

Current work SISO Example

Profit function: −3x2k − 5u2

k−2xkuk + 98xk + 80uk

Objective: Maximize Profit !

Scheme two:

Controller minimizes the negative of profit

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 21 / 37

Current work SISO Example

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPC

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPCeco-MPC

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $642.6 $588.2 8.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 22 / 37

Current work SISO Example

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPC

4

6

8

10

12

14

16

18

20

22

-4 -2 0 2 4 6 8 10

Sta

te

Input

Cost contours

Tracking contours

Steady state linetarg-MPCeco-MPC

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $642.6 $588.2 8.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 22 / 37

Current work Effect of disturbance

-30

-25

-20

-15

-10

-5

0

16 18 20 22 24 26 28 30

Pro

fit

Input

p = 5

p = 0

p = −5

-30

-25

-20

-15

-10

-5

0

16 18 20 22 24 26 28 30

Pro

fit

Input

p = 5

p = 0

p = −5

Disturbance model:xk+1 = Axk + Buk + Bdpk

Disturbance shifts the steadystate cost curve

The steady state target changes

System transients from previoustarget to the new target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 23 / 37

Current work Effect of disturbance

-30

-25

-20

-15

-10

-5

0

16 18 20 22 24 26 28 30

Pro

fit

Input

p = 5

p = 0

p = −5

-30

-25

-20

-15

-10

-5

0

16 18 20 22 24 26 28 30

Pro

fit

Input

p = 5

p = 0

p = −5

Disturbance model:xk+1 = Axk + Buk + Bdpk

Disturbance shifts the steadystate cost curve

The steady state target changes

System transients from previoustarget to the new target

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 23 / 37

Current work Effect of disturbance

-4

-2

0

2

4

6

8

16 18 20 22 24 26 28

Sta

te

Input

p = 0

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $102.59 $48.722 52.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 24 / 37

Current work Effect of disturbance

-4

-2

0

2

4

6

8

14 16 18 20 22 24 26 28

Sta

te

Input

p = 5

p = 0

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $102.59 $48.722 52.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 24 / 37

Current work Effect of disturbance

-4

-2

0

2

4

6

8

14 16 18 20 22 24 26 28

Sta

te

Input

p = 5

p = 0

targ-MPC

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $102.59 $48.722 52.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 24 / 37

Current work Effect of disturbance

-4

-2

0

2

4

6

8

14 16 18 20 22 24 26 28

Sta

te

Input

p = 5

p = 0

targ-MPCeco-MPC

Performance Measures

targ-MPC eco-MPC ∆(index)%Lossa $102.59 $48.722 52.5

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 24 / 37

Current work Effect of disturbance

Random disturbance corrupts state evolution

All states assumed measured

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40 45 50

Sta

te

Time

targ-MPCeco-MPC

eco-opt

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Inpu

t

Time

targ-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 25 / 37

Current work Effect of disturbance

Random disturbance corrupts state evolution

All states assumed measured

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40 45 50

Sta

te

Time

targ-MPCeco-MPC

eco-opt

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Inpu

t

Time

targ-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 25 / 37

Current work Effect of disturbance

targ-MPC eco-MPC ∆(index)%Lossa $2537.6 $968.5 61.8

aReference: Maximum profit = 0

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 26 / 37

Current work Linear economics

Maximum throughput

Consider a typical profit function for the plant:

(−L) =∑

j

pPjPj −

∑i

pFiFi −

∑k

pQkQk

Pj : Product flows Fi : Feed flows Qk : Utility duties

Assume all feed flows set in proportion to throughput (F ), constantefficiency in the units and constant intensive variables

Fi = kF ,iF Pj = kP,jF Qk = kQ,kF

(−L) =

∑j

pPj kP,j −∑

i

pFi kF ,i −∑

k

pQkkQ,k

F = pF

p: operational profit per unit feed F processed

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 27 / 37

Current work Linear economics

Maximum throughput

Consider a typical profit function for the plant:

(−L) =∑

j

pPjPj −

∑i

pFiFi −

∑k

pQkQk

Pj : Product flows Fi : Feed flows Qk : Utility duties

Assume all feed flows set in proportion to throughput (F ), constantefficiency in the units and constant intensive variables

Fi = kF ,iF Pj = kP,jF Qk = kQ,kF

(−L) =

∑j

pPj kP,j −∑

i

pFi kF ,i −∑

k

pQkkQ,k

F = pF

p: operational profit per unit feed F processed

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 27 / 37

Current work Linear economics

Maximum throughput

Consider a typical profit function for the plant:

(−L) =∑

j

pPjPj −

∑i

pFiFi −

∑k

pQkQk

Pj : Product flows Fi : Feed flows Qk : Utility duties

Assume all feed flows set in proportion to throughput (F ), constantefficiency in the units and constant intensive variables

Fi = kF ,iF Pj = kP,jF Qk = kQ,kF

(−L) =

∑j

pPj kP,j −∑

i

pFi kF ,i −∑

k

pQkkQ,k

F = pF

p: operational profit per unit feed F processed

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 27 / 37

Current work Linear economics

Economic optimum ⇐⇒ Maximizing throughput

Linear economics: Unconstrained problem unbounded

Constrained problem: Optimal solution lies on the process bounds

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state linetarg-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 28 / 37

Current work Linear economics

Economic optimum ⇐⇒ Maximizing throughput

Linear economics: Unconstrained problem unbounded

Constrained problem: Optimal solution lies on the process bounds

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state linetarg-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 28 / 37

Current work Linear economics

Economic optimum ⇐⇒ Maximizing throughput

Linear economics: Unconstrained problem unbounded

Constrained problem: Optimal solution lies on the process bounds

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state line

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Sta

te

Input

Linear economic contours

Tracking contours

Steady state linetarg-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 28 / 37

Current work Example: Transient to steady state

Example

xk+1 =

[0.857 0.884−0.0147 −0.0151

]xk +

[8.565

0.88418

]uk

Input constraint: −1 ≤ u ≤ 1

Leco = α′x + β′u

α =[−3 −2

]′β = −2

Ltrack = ‖x − x∗‖2Q + ‖u − u∗‖2

R

Q = 2I2 R = 2

x∗ =[60 0

]′u∗ = 1

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 29 / 37

Current work Example: Transient to steady state

targ-MPCtarg-MPC60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

x 2

targ-MPC eco-MPCtarg-MPC eco-MPC60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

x 2

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 30 / 37

Current work Example: Transient to steady state

targ-MPCtarg-MPC60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

x 2

targ-MPC eco-MPCtarg-MPC eco-MPC60 65 70 75 80 85

x1

-2

0

2

4

6

8

10

x 2

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 30 / 37

Current work Example: Transient to steady state

55

60

65

70

75

80

0 5 10 15 20 25 30 35 40 45 50

Sta

te

targ-MPC

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

Sta

te

targ-MPC

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

Inpu

t

Time

targ-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 31 / 37

Current work Example: Transient to steady state

55

60

65

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50

Sta

te

targ-MPCeco-MPC

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

Sta

te

targ-MPCeco-MPC

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

Inpu

t

Time

targ-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 31 / 37

Current work Example: Transient to steady state

Example: Effect of disturbance

Random disturbance affecting the state evolution

All states assumed measured

System started at the steady optimum with zero disturbance

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 32 / 37

Current work Effect of disturbance

46

48

50

52

54

56

58

60

62

0 10 20 30 40 50 60 70 80 90 100

Sta

te

targ-MPC

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

0 10 20 30 40 50 60 70 80 90 100

Sta

te

targ-MPC

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Inpu

t

Time

targ-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 33 / 37

Current work Effect of disturbance

46485052545658606264

0 10 20 30 40 50 60 70 80 90 100

Sta

te

targ-MPCeco-MPC

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

0 10 20 30 40 50 60 70 80 90 100

Sta

te

targ-MPCeco-MPC

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Inpu

t

Time

targ-MPCeco-MPC

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 33 / 37

Future work Theoretical Issues

Future work

Investigate economic models

Presented idea banks on a good economic measureTranslation of objectives needs deep investigationNeed to define a good representative of the process economics

Establish asymptotic stability and convergence properties for broaderclass of cost functions

Steady state cost maybe nonzero =⇒ Infinite horizon cost isunboundedCosts corresponding to the optimal input sequence may not bemonotonically decreasing

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 34 / 37

Future work Theoretical Issues

Future work

Investigate economic models

Presented idea banks on a good economic measureTranslation of objectives needs deep investigationNeed to define a good representative of the process economics

Establish asymptotic stability and convergence properties for broaderclass of cost functions

Steady state cost maybe nonzero =⇒ Infinite horizon cost isunboundedCosts corresponding to the optimal input sequence may not bemonotonically decreasing

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 34 / 37

Future work Software development

Update the software tools to handle the new class of problems

Efficient software tools critical to the evaluation of the new class ofproblemsThe existing tools handle quadratic objective functionsEconomics may not be quadratic and hence the tools have to becapable of handling more general cost functions

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 35 / 37

Future work

Set up the problem for a realistic scenario and test using industrialdata

Simulations, like the ones shown, just predict the possible advantagesof the new schemeThe idea must be tested for a physical system with well definedeconomics

Collaborate for the distributed version

Distributed control schemes allow more robust and flexible controlThe new scheme can be implemented in distributed scenario

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 36 / 37

Conclusions

Conclusions

Profit depends heavily on steady state economic optimization layer

A separate layer causes a loss in economic performance duringtransient

Opportunity to rethink distribution of functionality between layers

Merging the economics with the controller objective reduces the lossof economic information

Economic optimizing control expected to capture the potentialprofitable areas of operation

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 37 / 37

Conclusions

Conclusions

Profit depends heavily on steady state economic optimization layer

A separate layer causes a loss in economic performance duringtransient

Opportunity to rethink distribution of functionality between layers

Merging the economics with the controller objective reduces the lossof economic information

Economic optimizing control expected to capture the potentialprofitable areas of operation

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 37 / 37

Conclusions

Conclusions

Profit depends heavily on steady state economic optimization layer

A separate layer causes a loss in economic performance duringtransient

Opportunity to rethink distribution of functionality between layers

Merging the economics with the controller objective reduces the lossof economic information

Economic optimizing control expected to capture the potentialprofitable areas of operation

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 37 / 37

Conclusions

Conclusions

Profit depends heavily on steady state economic optimization layer

A separate layer causes a loss in economic performance duringtransient

Opportunity to rethink distribution of functionality between layers

Merging the economics with the controller objective reduces the lossof economic information

Economic optimizing control expected to capture the potentialprofitable areas of operation

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 37 / 37

Conclusions

Conclusions

Profit depends heavily on steady state economic optimization layer

A separate layer causes a loss in economic performance duringtransient

Opportunity to rethink distribution of functionality between layers

Merging the economics with the controller objective reduces the lossof economic information

Economic optimizing control expected to capture the potentialprofitable areas of operation

Rishi Amrit (UW-Madison) Economic Optimization in MPC 29th February, 2008 37 / 37