E34 : Muon g-2/EDM at J-PARC

Post on 12-Feb-2017

230 views 1 download

Transcript of E34 : Muon g-2/EDM at J-PARC

E34 : Muon g-2/EDM at J-PARC the 16th J-PARC PAC meeting

January 9-11, 2013, KEK/J-PARC

On behalf of the Collaboration

Naohito SAITO (KEK / J-PARC)

Collaboration (today’s snap shot) n  98 members (was 92 at PAC13 …still evolving) n  21 Institutions n  Academy of Science, BNL, BINP, CRNS-APC, UC Riverside, Charles U., KEK,

NIRS, UNM, Osaka U., PMCU, RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TITech, TRIUMF, U. Victoria

n  7 countries n  Czech, USA, Russia, Japan, UK, Canada, France

2

CM6 (November 1-3, 2012) n Progress Report from All Areas

3

Kanda (M2) Meets Prof. Kinoshita n Physics connects a half-century gap in age

4

History of the Collaboration n  LOI submitted at the 8th PAC (17-19, July, 2009) n  Proto-Collaboration Meeting (27, November, 2009) n  Proposed at the 9th PAC (15-17, Jan., 2010)

n  Received strong encouragement and support for further R&D n  The 1st CM (8-9, June, 2010)

n  Updates presented at the 10th PAC (16-18, July, 2010) n  PAC asked more detailed schedule with a set of milestones:

n  The 2nd CM (9-10, Dec., 2010)

n  “Response” submitted at 11th PAC (14-16, Jan. 2011) n  The 3rd CM (29-30, June, 2011)

n  Status Report at the 12th PAC (8-10, July, 2011) n  Mini-CM (7, September, 2011) n  The 4th CM (10-12, November, 2011)

n  CDR Presented at the 13th PAC (13-15, January, 2012) n  Stage-1 recommended to IPNS Director

n  “Muon at MLF” at the 14th PAC (15-17, March, 2012) n  The 5th CM (28-30, June, 2012) n  Progress Report at the 15th PAC (13-15, July, 2012)

n  Stage-1 status granted by the IPNS Director

n  The 6th CM (1-3, November, 2012) 5

~ 3 years from Proto-Collaboration Meeting and Proposal Submission

Outline

n Physics and Experimental Method n Current status of R&D Activities n Summary

6

“Final Report” from BNL E821

n E821 at BNL-AGS measured down to 0.7 ppm for both µ+ and µ-

n 3.4 sigma deviation from the SM n SM prediction

OK? n New Physics?

n Need to explore further

n Preferably NEW METHOD!

!

"aµ( today) = aµ

(Exp) # aµ(SM) = (295 ± 88) $10#11

Updates on the SM Prediction

8

n CODATA updated lambda value (2006)

n New e+e- data analysis

n KLOE and Babar n Still > 3 sigma

deviation from the SM n VEPP-2000 n Super KEKB to come

“Tension” with LHC Data n  Δχ2 increases significantly when (g-2)µ data

included in the NP based phenomenological fit

9

The CMSSM and NUHM1 in Light of 7 TeV LHC, B_s to mu+mu- and XENON100 Data. O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche et al.. Jul 2012. 27 pp. Published in Eur.Phys.J. C72 (2012) 2243

Origin of EDM M.Pospelov and A.Ritz, Ann.Phys. 318 (2005) 119

10

g-2, EDM and cLFV n Large g-2 à Large cLFV à Large EDM

11

G. Isidori, F. Mescia, P. Paradisi, and D. Temes, PRD 75 (2007) 115019

J. Hisano, Nagai, Paradisi

Current limit by MEG 2.4 x 10-12

< 10−13(blue)Br(µ→ eγ)

< 10−11(green)Br(µ→ eγ)

A Large Muon EDM from Flavor? Gudrun Hiller, (CERN & Dortmund U.) , Katri Huitu, Timo Ruppell, (Helsinki U. & Helsinki Inst. of Phys.) , Jari Laamanen, (Nijmegen U.) . e-Print: arXiv:1008.5091 [hep-ph]

n Muon EDM is enhanced due to LFV

12

!

µ = M ˜ A

Parameter to describe the Flavor mixing in the Slepton sector

Measured in g-2 experiment n “Inclusive” precession frequency

n Experimental limit of EDM is in the similar range!

13

!

" = "a2 +"#

2

!

! " a = #

em

! B

Courtesy by T. Shietinger

Bird’s eye photo in Feb. 2008

D-Line

U-Line S-Line

15

Resonant Laser Ionization of Muonium (~106 µ+/s)

3 GeV proton beam ( 333 uA)

Surface muon beam (28 MeV/c, 4x108/s)

Muonium Production (300 K ~ 25 meV) Super Precision Magnetic Field

(3T, ~1ppm local precision)

Silicon Tracker

66 cm diameter

Magic vs “New Magic” n Complimentary!

22 14m diameter

BNL/Fermilab Approach J-PARC Approach

17

Resonant Laser Ionization of Muonium (~106 µ+/s)

Graphite target (20 mm)

3 GeV proton beam ( 333 uA)

Surface muon beam (28 MeV/c, 4x108/s)

Muonium Production (300 K ~ 25 meV⇒2.3 keV/c)

Muon LINAC (300 MeV/c)

Super Precision Magnetic Field (3T, ~1ppm local precision)

Silicon Tracker

66 cm diameter

EDM

g-2

BNL, FNAL, and J-PARC n Complimentary!

18

BNL-E821 Fermilab J-PARC

Muon momentum 3.09 GeV/c 0.3 GeV/c

gamma 29.3 3

Storage field B=1.45 T 3.0 T

Focusing field Electric quad None

# of detected µ+ decays 5.0E9 1.8E11 1.5E12

# of detected µ- decays 3.6E9 - -

Precision (stat) 0.46 ppm 0.1 ppm 0.1 ppm

Spin Flipper!

Milestones in the CDR (shown at PAC13)

n Demonstration of UCM Production n 1e6µ+/sec or >1% conversion efficiency

n Muon acceleration test n RFQ and IH

n Prototyping Precision Magnet n Control local precision < 1ppm

n Injection and Kicker n With low-E electron

n High-rate tracker n Verify the time response upto > 1 MHz /strip

19

H-Line at MLF

20

n Mission Complete by MUSE Group!

HB1

Cabling must be completed before HB1 is highly activated. HB1: ~300 µSv/h in 2013.

Muon Source

21

µ+

Muonium Target

TRIUMF-S1249 : search for muonium emitting material at room temp.

TRIUMF-M15 beamline Goals are to examine materials at room temp. Ø  Muonium production rate Ø  Muonium distribution in vacuum

e-

e+

e+ MWDC NaI

µ+ Decay in vacuum

Slide by T. Mibe

Space-time distribution of Mu

n  Silica plate data is used to estimate the background distribution.

n  Enhancement in aerogel data is due to Mu emission in vacuum.

n  Such Mu signals are observed in all aerogel densities.

n  No strong density dependence was observed in online analysis.

23

● Aerogel 27mg/cc ● Silica plate

Distance from target surface

Reconstructed decay vertex position

Target surface

New 2011 data

Slide by T. Mibe

Mu Production at J-PARC Y. Nagashima et al.

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)�

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

-200 -100 0 100 2000.0

0.2

0.4

0.6

0.8

1.0

z0(mm)

0µs ~ 1µs

1µs ~ 2µs

2µs ~ 3µs

3µs ~ 4µs

zt (mm)

N(zt, 2300K)/N(zt, R.T.)n Hot W, then other materials

by Kanda

zt

Plot by Nagatomo & Suzuki

MUSE D-Line

Laser System

25

Coherent Lyman-αGeneration System

Regen. amp.

1~2 mJ

Intermid. amp.

~100 mJ

Yb fiberamplifier

100kHz Modulator

100kHz 50 nJ 2.0 ns

Power amp.

~1 J

SHGby LBO

SHGby CLBO SFG

by CLBO

250 mJ

100 mJ

50 mJ

500 mJ265.7nm531.4nm

DFB laser!1062.78 nm cw

Omega 1!212.556nm

DFB laser

820 or 840nmSeeded OPO

SHGby LBO

OPA

212.55 nm820 nm

122.09 nmMuon Lyman-!

212.55 nm

Kr 4p6

Kr 4p55p

Omega 2!820.39nm

Advanced Science Institute, RIKEN

Slide by RIKEN Group

Regeneration Amplifier and its Output Advanced Science Institute, RIKEN

・Nd dope : 1.0 at% ・Crystal size : 4×4 10t (YSAG and YGAG) ・Round trip time : 14 ns ・End mirror : ROC=1500mm ・Pump LD : Fiber delivered 808 nm qcw 25Hz 200µsec

Nd:YGAG

Output wavelength : 1062.78 nmMaximum energy : 2.4 mJ@25 mJ pump (limited by parasitic osc.)

2 mm

Beam Profile

Slide by RIKEN Group

Middle Amplifier and its Output Advanced Science Institute, RIKEN

Input pulse energy : 2.0 mJ (from Regenerative Amplifier) Gain material : 1% Nd:YSAG (ø4.0 mm × 80 mmL) Pump wavelength : 808.5 nm Maximum Output Energy: 80 mJ/pulse Slide by RIKEN Group

OMEGA 1 Nonlinear Freq. Conversion

LBO1062nm→531nm

BBO531nm→265nm

BBO265+1062→212nm

BaF2 Prism

Fluorescence imageof 212 nm beam

Advanced Science Institute, RIKEN

出力エネルギー: ≈ 1 mJ パルス幅: 2 ns

Slide by RIKEN Group

Kr/Ar Chamber for Lyman-αProduction

LiF prismKr + Ar mixture

MgF2 window

122 nm

Monochromator

!1,!2 : 100 mJ : 1 ns

PKr = 105 Pa PAr = 5.95 ! 105 Pa :240 "m

22.5 cm #50 "J O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokoyama, K. Ishida, and M. Iwasaki, Phys. Rev. A 84, 033842 (2011).

Advanced Science Institute, RIKEN

Muon LINAC

31

42.3 MeV  β≈0.7  

0.34 MeV  β≈0.08  

CDS  (1300MHz)  

Interdigita-­‐H  (324  MHz)  μe-­‐    

5.1 MeV  β≈0.3  

RFQ  (324  MHz)  

Middle-­‐β Low-­‐β

Baseline  for  g-­‐2  accelerator  200 MeV  β≈0.94  

Disk  loaded  structure  (1300MHz)  

High-­‐β

5.6 keV  β≈0.01  

Bunching Section

Bunching Section High hunt impedance

External coupling structure for low-β

Similar to electron accelerator to obtain high gradient.

IniOal  AcceleraOon  +  RFQ

•  Designed  for  β=0.01      (50keV  for  H-­‐  ,  5.68keV  for  µ-­‐)  

•  Field  factor  =  0.114,  Power  factor  =  0.013  (350  kW  for  H-­‐,  only  4.5  kW  for  µ-­‐)

J-­‐PARC  RFQ

target  

1st  electrode  

2nd  electrode  

3rd  electrode  

4th  electrode  

ε =  245  µm  mrad  βγε=    2.4  µm  mrad  

βγε=    2.9  µm  mrad  

RFQ  output:

By Artikova & Yoshida

・ Input muon profile at Z=0.

・ Set triple Quadrupole Magnets and RFQ in a line.

・ Estimated field factor of RFQ is 0.11. (Fieldfactor means Multiplication factor for muon simulation.) 34

Simulation of the RFQ Linac�

RFQ (324MHz)

Z

X Q Q Q

Loss:24.7%

Loss:17.1%

Beam transmission : 58.2 [%]

Energy : 5.6 [keV] ⇒ 0.34 [MeV]

Acceleration time : 690 [nS]

(Including drift time)

~0.35[T/m]

Field factor : 0.11

Y

X Simulation condition

IH-DTL with APF scheme �

The Latest Design IH-DTL with Alternating Phase Focusing

-­‐15

-­‐10

-­‐5

0

5

10

15

E  MV/m

Z  mm

Optimizing  E-­‐field  (with  APF)

Detail and Result parameters Frequency : 324.0MHz IH Length : 1470mm Number of gaps : 18gaps Energy : 340keV ⇒ 3.4MeV Transmission : 100% Acceleration time : 30nS N_Emittance: 2.0mm-mrad

‐ Electric Field (EM-field Analysis Result) ‐ Electric Field (Synchronous Particle Feel)

RFQ

IH Bohr Radius

Muon LINAC test : Layout at U-Line n Tight ! à H-Line

36

U-Line for Ultra-Slow Muon for Material and Life Science

preliminary

n Degrader will be used for acceleration test instead of UCM

n RFQ & RF source is ready.

n I-H cavity is ready.

Muon  LINAC  Schedule  (subject  to  budget) F3   F4   F1 F2 F3 F4 F1 F2 F3 F4 F1     F2     F3     F4     F1    

Area Task ItemMuon  Source

DesignMuon  ProductionDegraderLaser  Ionization

Initial  AccelerationDesignVacuum  chamber  and  electrodeComissioning 6

RFQSimulationInstallationCommissioning

I-­‐HOptimizationCavityInstallationCommissioning 6

Middle-­‐betaDesignRFStructure 4 6

High-­‐betaDesignRFStructure 4 6

JFY2013 JFY2014 JFY2015 JFY2014Calendar  Year CY2012 CY2013 CY2014 CY2015 CY2014

MonthJapanese  Fiscal  Year JFY2012

test

Muon Injection & Magnet

Image  of  beam  injecOon  into  the  storage  volume

13/01/10   39

Upper  plate  (pure  iron)

Return  yoke    (pure  iron,  cylindrical  shape)  

Pole  Op  (pure  iron)

Main  coil

¼  model  (OPERA)

From  LINAC  &  transport  line

Super  conducOve  solenoid  magnet  •  Main  field  3  T  •  3m  in  height  •  Outer  radius  of  iron  yoke;  2m

Tunnel    

13/01/10 40

Slide by Sasaki

Pulsed  current

2pairs  of  coil

Required  field:  Pulsed  axial  radial  magneOc  field   Bkick(t)=Bpeak ×sin(ωt) ω=π/Tkick

ü Stop beam vertical motion 7~9mrad ü Peak magnetic field:

•  1 ~ 10 gauss ü Time profile:

•  Tkick=150 nsec (c.f. 20turns) ü Space profile:

•  1% uniformity in radial 33cm±5mm •  ±10cm in solenoid axis

I(t)=Ipeak ×sin(ωt) ω=π/Tkick

Ipeak ∼100A/coil cm

R=33.3cm Ex.:Set  coils  at  

±30cm  in  height.  We  obtain  good  radial  field  

within  verOcal  volume  of  

±10cm 13/01/10 41

Slide by Hiromi

Pulsed  high  current  supply

13/01/10 42

     10W  +20kV  DC    

1MΩ

+20kV  ,  1nF

3µH

Thyratron  switch

Current  Transfer

+

G

Kicker  coil

Input  15kV

8V  à80A/coil

Signal  of  CT  

Inner  and  outer  coils

200nsec

Slide by Hiromi

A  first  look  of  field  measurement  (status  report  from  kicker  test  bench)

13/01/10 43

Supported  by  Grand-­‐in-­‐Aid:  Kakenhi

Prof.  Nakayama H.  Iinuma

My  son

Memorial  photo  of  the  day  of  the  first  successful  field  measurement!

2012/08/23    SIT48  members  from  a  private  company  “H”

Slide by Hiromi

Now  and  next  things Next  •  Find  a  good  soluOon  to  reduce  inductance  

AND  keep  field  strength  by  use  of  aluminum  or  cupper  plates,  etc.  

•  Try  beoer  core  for  EMC  noise  reducOon.    And  next  ….  (I  will  be  back)  •  Try  actual  conductor  (inductance  may  

change  )

13/01/10 44

Thanks!

Now  •  Kicker  test  bench  works  are  

going  very  well  •  spaOal  field  distribuOon  is  

reasonable  •  Half-­‐sign  Ome  distribuOon  is  

obtained,  but  need  to  reduce  it’s  period  down  to  factor  123.  

Currently  we  use  “Silicone  rubber  insulated  coaxial  cables”  for  our  safety.  In  the  real  experiment,  we  use  hollow  conductor  or  simple  cupper  pipe.

Slide by Hiromi

Detector

Development  of  Front-­‐end  ASIC •  Main  features  

–  fast  shaping  –  5ns  Ome  stamp  for  40us  

•  First  prototype  (16ch)  showed  required  performance  can  be  achieved  with  present  design  strategy.  

•  64ch  version  is  now  under  design  for  next  prototype

~100ns

analog out

test pulse (3fC) Evaluation board

Analog part Digital part

Slide by Mibe

Super-­‐stable  frequency  standard •  High-­‐stable  frequency  standard  is  

required  for  the  experiment  (Δf/f  <<  10E-­‐9).  

•  The  Rb-­‐atom  frequency  standard  with  feedback  correcOons  from  GPS  as  well  NMIJ  saOsfies  the  stability  requirement.  

•  A  test  of  clock  distribuOon  has  been  started  with  FPGA  +  10GbE  serial  link,  providing  confidence  of  distribuOng  stable  clock  over  the  system.  

47

Phase noise analyzer

FPGA (TX) FPGA (RX)

Slide by Mibe

other  detector  R&Ds •  SystemaOc  survey  of  source  of  

error  B-­‐field  in  detector  components  with  NMR  system  

•  Development  of  iron-­‐free  DC-­‐DC  converter  –  ~10kHz  switching,  high  power  

applicaOon  limited  –  Demonstrated  proof-­‐of-­‐

principle  with  prototype  

•  Silicon  sensor  assembly  –  ParOcipated  in  Belle-­‐II  SVD  

assembly  R&D  

Belle-II SVD assembly lab at IPMU

Slide by Mibe

Schedule n Need to be competitive with Fermilab g-2 which

starts in 2016.

49

JFY2012 JFY2014 JFY2016 JFY2013 JFY2015 JFY2017

H-Line

Muon Source

Initial Acc

Laser RFQ / IH

Hi-β LINAC

Hi Precision Magnet

Kicker System

Detector

Originally…

Funding ! n  Budget request from KEK/J-PARC for could start only at

JFY17 n  Muon Beamlines S&H may start with suppl. budget JFY12 to be

completed in JFY14 n  Grant-in-Aid : Kakenhi

n  (Mu HFS R&D by Shimomura-san, Matsuda-san ) n  Beam Injection by Iinuma-san n  Field Measurement by Sasaki-san n  Calibration system for S1249 by Ueno-san n  ”Slow Muon”: All-Japan Muon Team led by Torikai-san n  Muon LINAC under “Slow Muon” by Hayashizaki-san

n Detector part is applied ! ( takes three years ) n  JSPS International

n  Sakura Japan-France Collaboration: by Tsutomu-Wilfrid n  KEK International Funding

n  US-Japan : H-Line support and BPM for g-2/EDM approved n  Seeking for more international cooperation! 50

US-­‐Japan Precision field measurement with NMR Recycling steel shielding blocks

Absolute calibration probe used in previous g-2/HFS experiment.

Slide by Mibe

Summary n  R&D basing on the Milestones endorsed at PAC13 is

moving ahead! n  There are progress in all fronts of activities

n  Muon Source n  Mu Production at J-PARC started! n  Laser started to “Lase”

n  Magnet design and coil prototyping in progress à need test fabrication

n  Muon LINAC test in progress à moved to H-Line n  Spin Flipper for Controlling Systematics (esp. for EDM) n  Detector : the first prototype is readout and will be applied to beam

n We appreciate continual STRONG support by the PAC and the LAB towards timely realization of the experiment n Fermilab g-2 starts in 2016

52

Bakups

53

Major  Three  AcOviOes

13/01/10 54

1.  Remove  electric  noise  inside  of  power  supply

High  current  line  and  Ferrite  core

2.  Measurement  of  Ome  and  spaOal  distribuOon  Br(t,  z,  r)  by  pickup  coil

Solenoid  and  radial  axes

3.  Reduce  inductance  for  ideal  Ome  distribuOon,  Br(t)  

Inside  of  the  kicker  power  supply

Nakayama-­‐san  is  working  hard  now!

Real  works  are  done  by  Prof.  Nakayama

13/01/10 55

Checking  magneOc  field

Set  up  proto  type  kicker

Prepare  pickup  coils

Setup  of  field  measurement 1.  Pickup  coil  (we  try  several  types)  

•  Area  R=5,  10  and  15mm  •  30~100  turns  

2.  Find  beoer  parameter  of  analog  integrator  (R-­‐C)  3.  Noise  reducOon  

•  Dumping  resistance  •  difference  amplifier  

13/01/10 56

Pick-­‐up

Resister  for  damping

Difference  amplifier

R-­‐C  integrator

Trigger  (FuncOon  generator)

oscilloscope •  Arm  picks  up  background  EMC  noise.    

•  Therefore,  we  use  difference  amplifier.

2012/8/3

Signal  from  pickup  coil    (differenOal  amplifier+    integrator)

Raw  signal  Br(t)

13/01/10 57

•  Time  distribuOon  of  current    I(t)  and  radial  field  Br(t)  are  half-­‐sign  shape,  but    need  to  be  shorten.  

àreduce  coil  inductance.  •  How  about  spaOal  

distribuOon?

High  current  line  loops  around  Ferrite  core  removes  EMC  noise  !

Current  transfer  Inner  and  outer  coils  

300nsec

Measurement  of  spaOal  distribuOon  Br(z,r)

13/01/10 58

Solenoid  and  radial  axes

Uncertainty  for  each  point  is  from  reading  fluctuaOon  of  oscilloscope

mV

1  Gauss

2  Gauss

Requirement of space profile (see page 5); 1% uniformity in radial 33cm±5mm along ±10cm in solenoid axis

•  Probe  can  move  verOcally  (along  solenoid  axis)  and  radial  direcOon,  •  Although  this  is  NOT  a  complete  set  up  for  checking  1%  uniformity  in  radial  

direcOon  yet,  we  see  its  uniformity  is  beoer  than  5%  in  30.5  <R  <35.5cm  along  0  <z  <10cm.    à  we  are  happy  as  the  first  stage.  

Target  region    R=33+/-­‐0.5cm  Z=+/-­‐10cm  

Measurement  vs.  OPERA  calculaOon

13/01/10 59

•  Red points are measurement, and blue points are calculation by OPERA. •  Left plot is R=35.5cm case and right plot is R=33.3cm case, respectively. •  Measurement and calculation are good agreement within uncertainty.

mV mV

How  to  reduce  inductance?

13/01/10 60

Nakayama-­‐san  is  working  hard  to  find  a  soluOon,  “how  to  reduce  inductance  but  keep  field  strength  and  good  spaOal  distribuOon?”

Non  aluminum  plates  case  

•  As  we  see  in  page  10,  we  need  to  reduce  period  of  half-­‐sign  down  to  factor  2.  

•  One  easiest  way  is  increasing  a  peak  current,  but  EMC  also  increase.  à  NOT  good.  

•  Therefore,  we  try  to  reduce  inductance  of  coils.              To  do  that,  we  aoach  aluminum  plates  to  coils  .  •  However,  field  strength  is  dramaOcally  decreased.  

(SpaOal  distribuOon  may  also  be  changed.)

Aoach  2cm  width  aluminum  plates  to  lower  coils  (both  inner  and  outer)  

example

CT Pickup  coil Pickup  coil

More Muons! S. Kanda, Y. Fukao, et al.

n Intensive studies are ongoing to increase the number of Muonium atoms! n Absorb momentum bite (~ x 2) n Increase “surface” (~ x several ) à x 4 n With expected SiC target for DeeMe à x2

61

62

Beam time I : Nov 18-23,2010 II: Oct 20-29, 2011

Slide by T. Mibe

Conversion Efficiency – cont’d n S1249 results + literature

63 A factor of 8 behind

64

65

66

67

“g-2” tension with LHC 1/fb O. Buchmueller, et al, hep-ph> arXiv:1110.3568v1 CMSSM

n  (gー2) µ pull down Gaugino-mass and push up the tan β to ~ 40

n  it will be important to subject the (g − 2)µ constraint to closer scrutiny, and the upcoming Fermilab and J-PARC experiments on (g − 2)µare most welcome and timely in this regard.

Government Review of J-PARC n  The 3rd review of J-PARC: every 5 years n  Future plan was a major subject

n  Accelerator Improvement: 60 Oku yen n  New Beamline at Hadron Hall with COMET phase-1 : 40 Oku yen n  Muon Beamlines : S and H-lines : 25 Oku-yen

n  Based on the Master Plan by Japan Science Council:   “J-PARC upgrades for Elucidation of Origin of the Matter”

n  380 Oku-yen n  ranked as “AA”

n  Budget Request from KEK includes above > 125 Oku-yen for 5 years 68