Ductile to Transitions in Plastics · 2020. 12. 11. · Jeffrey A. Jansen jeff@madisongroup.com...

Post on 13-Jun-2021

2 views 0 download

Transcript of Ductile to Transitions in Plastics · 2020. 12. 11. · Jeffrey A. Jansen jeff@madisongroup.com...

12/11/2020

1

Ductile‐to‐Brittle Transitions in Plastics

Jeffrey JansenDecember 10, 2020

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Goal

• Why do I experience sudden unexpected failure in my plastic components?  

• Why do the properties of my plastic parts change?

• Why do I get brittle failures in my ductile material?

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

To address questions that arise regarding plastic component failure:

Jeffrey A. Jansenjeff@madisongroup.com

1

2

12/11/2020

2

Agenda

• Cracking in Plastics• Viscoelasticity• Temperature• Strain Rate• Time Under Load• Chemical Contact – ESC• Dynamic Stress• Molecular Weight• Molecular Degradation• Molecular Fusion• Stress Concentration

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

CRACKING IN PLASTICS

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

3

4

12/11/2020

3

Characteristics of Plastics Cracking:

• Covalent  polymer backbone bonds are not broken by mechanical forces

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Plastics Cracking

Jeffrey A. Jansenjeff@madisongroup.com

Characteristics of Plastics Cracking:

• Disentanglement mechanism in which polymer chains slide past each other

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Plastics Cracking

Jeffrey A. Jansenjeff@madisongroup.com

5

6

12/11/2020

4

Characteristics of Plastics Cracking:

• Applied stresses – both internal and external ‐overcome inter‐molecular forces such as,      Van derWaals forces, London dispersion forces, hydrogen bonding, and dipole interactions

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Plastics Cracking

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Characteristics of Plastics Cracking:

• Mechanism is the same for amorphous and semi‐crystalline polymers

Amorphous Semi‐crystalline

Plastics Cracking

Jeffrey A. Jansenjeff@madisongroup.com

7

8

12/11/2020

5

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Linear elastic deformation

9

10

12/11/2020

6

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Non-linearelastic

Linear elastic

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Non-linearelastic

Yielding

Linear elastic

11

12

12/11/2020

7

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Non-linearelastic

Yielding

Necking

Plastic deformation

Linear elastic

Cracking ‐ Overload

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Non-linearelastic

Yielding

Necking

FailurePlastic deformation

Linear elastic

13

14

12/11/2020

8

• Cracking occurs as a stress relief

• Ductile fracture is a bulk molecular response through yielding  (macro molecular rearrangement) followed by disentanglement

• Brittle fracture is a localized molecular response where disentanglement is favored over yielding

Cracking is Simply a Response to Stress

Plastics Cracking

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Plastics Cracking

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Brittle vs. Ductile Fracture• Ductile fracture ‐ extensive plastic deformation and energy absorption (“toughness”) before fracture•Brittle fracture ‐ little plastic deformation and low energy absorption before fracture

Jeffrey A. Jansenjeff@madisongroup.com

15

16

12/11/2020

9

Plastics Cracking

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Macro‐DuctilityNo Macro‐Ductility

Jeffrey A. Jansenjeff@madisongroup.com

Plastics Cracking

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

No Micro‐Ductility Micro‐Ductility

Jeffrey A. Jansenjeff@madisongroup.com

17

18

12/11/2020

10

Plastics Cracking

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Most Failures Represent Brittle Behavior of a

Normally Ductile Plastic

Jeffrey A. Jansenjeff@madisongroup.com

Production• Low Molecular ‐Weight 

Material Selection

• Poor Fusion / Molecular Entanglement

• Contamination

• Increased Filler Level

• Stress Concentration –Design or Defects

• Molecular Degradation

Service• Reduced Temperature

• Elevated Strain Rate

• Extended Time Under Load

• Dynamic Stress Loading

• Chemical Exposure

• Loss of Plasticizer

• Molecular DegradationDuctile to Brittle Transitions The Madison Group                                                    

608‐231‐1907

Plastic Ductile‐to‐Brittle Transitions

Jeffrey A. Jansenjeff@madisongroup.com

Plastics Cracking

19

20

12/11/2020

11

VISCOELASTICITY

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Viscoelasticity

Because of the molecular structure of the molecules, thermoplastic materials have different properties compared to other materials, like metals.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

The polymer molecules consist of very long chains – high molecular weight.

The individual polymer chains are entangled in each other.

The polymer chains are mobile and can slide past each other because they do not share chemical bonds with the other chains around them.

21

22

12/11/2020

12

• Viscoelasticity is the property of materials that exhibit 

both viscous and elastic characteristics when 

undergoing deformation. 

• Viscous materials, like honey, resist shear flow and 

strain linearly with time when a stress is applied. 

• Elastic materials, like a  rubber band  steel rod, strain 

when stressed and quickly return to their original state 

once the stress is removed. 

• Viscoelastic materials have elements of both of these 

properties and, as such, exhibit time‐dependent strain.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Viscoelasticity

Jeffrey A. Jansenjeff@madisongroup.com

• Viscoelastic materials have elements of both of these properties and, as such, exhibit unique behavior

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Viscoelasticity

Spring and dashpot model

Jeffrey A. Jansenjeff@madisongroup.com

23

24

12/11/2020

13

Viscoelasticity

• There are three main factors that will affect the viscoelasticity of a plastic part:

Temperature, Time, and Strain Rate

• As the temperature is increased, the polymer chains are further apart, there is more free volume and kinetic energy, and they can slide past one another and disentangle more easily.

• As the strain rate is increased, the polymer chains do not have enough time to undergo yielding and they will disentangle.

• Over time, there is mobility between the polymer chains.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Viscoelasticity

Why is viscoelasticity important?• Thermoplastic materials have both long‐term and short term 

properties – they flow due to the application of stress over time.

• Most mechanical testing of plastic materials is actually testing the material’s viscoelasticity – how the plastic flows when different stresses are applied.

• Plastics are time, temperature and strain rate sensitive. 

• It is important to understand the viscoelastic nature of plastic materials so that that their behavior in the intended application can be understood.

Viscoelasticity is a fundamental concept of plastic behavior that needs to understand!

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

25

26

12/11/2020

14

TEMPERATURE

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Temperature

Temperature• Lower temperature → lower duc lity

• Kinetic energy

• Molecular response shifts to disentanglement/slippage away from yielding

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

27

28

12/11/2020

15

Temperature

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Strain

Str

ess

Soft and Tough

Hard and Tough

Hard and Strong

Hard and Brittle

ꞏ Source: “Ductile-To-Brittle Transition of Plastic Materials”, Advanced Materials and Processes, ASM International, February 2006, pg. 39-42.

Jeffrey A. Jansenjeff@madisongroup.com

Temperature

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Noryl 731

Jeffrey A. Jansenjeff@madisongroup.com

29

30

12/11/2020

16

Temperature

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

0

10

20

30

40

50

60

70

80

90

100

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

Stress (MPa)

Strain (%)

PET

23 °C55 °C

Temperature

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Temperature Polycarbonate ABS

73 °F 33 ft‐lbs/in.2 9 ft‐lbs/in.2

‐22 °F 6 ft‐lbs/in.2 3 ft‐lbs/in.2

Notched Izod Impact Strength

Jeffrey A. Jansenjeff@madisongroup.com

31

32

12/11/2020

17

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Liquid

Random movement of chains

Difficult movement of chains

Flexible

Glassy

SoftLimited local

chain movement

Tg

Tm

Temperature

Stif

fnes

sSource: “Understanding the Consequence of Ductile-to-Brittle Transitions in a Plastics Materials Failure”, Published and Presented at ANTEC, 2008

Jeffrey A. Jansenjeff@madisongroup.com

Temperature – Semi‐crystalline

Temperature – Amorphous

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Viscous

Temperature

Source: “Understanding the Consequence of Ductile-to-Brittle Transitions in a Plastics Materials Failure”, Published and Presented at ANTEC, 2008

Limited local chain movement

Movement of chains under stress

Rubbery

Flexible

Rigid

Glassy

Tg

DBTT

15-17 ft-lbs/inch

2-3 ft-lbs/inch.

Stif

fnes

s

Easy movement of chains

Jeffrey A. Jansenjeff@madisongroup.com

33

34

12/11/2020

18

STRAIN RATE

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Characteristics of high strain rate cracking:• Elevated strain rate → lower duc lity

• Polymer chains slide past each other through disentanglement mechanism.  

• At increasingly elevated strain rates, the polymer molecules making up the formed plastic component are precluded from having sufficient time to undergo plastic deformation and yielding.

Reduced impact properties

Reduced fracture toughness

Strain Rate

Jeffrey A. Jansenjeff@madisongroup.com

35

36

12/11/2020

19

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

High Strain Rate Applications:

• Impact

• Snap‐fit Installation

• Water Hammer / Rapid Pressurization

Strain Rate

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

ꞏ Source:  “Ductile-To-Brittle Transition of Plastic Materials II”, Advanced Materials and Processes, ASM International, February 2007, pg. 25-27

Strain

Str

ess

Ductile

Ductile-Brittle

Brittle-Ductile

Brittle

Strain Rate

Jeffrey A. Jansenjeff@madisongroup.com

37

38

12/11/2020

20

Strain Rate

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning™ is 

a trademark used herein under license.

Jeffrey A. Jansenjeff@madisongroup.com

Strain Rate

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Incr

easi

ng T

oug

hnes

s

Low density polyethyleneNylon – wet

PolycarbonateAcrylonitrile:butadiene:styrene resin

Polypropylene copolymers High density polyethylene

Nylon – dry Poly(vinyl chloride)

Polyacetal Poly(ethylene terephthalate)Polypropylene homopolymer

Poly(methyl methacrylate) Polystyrene

-20 0 20 40 60 Temperature °C

Jeffrey A. Jansenjeff@madisongroup.com

39

40

12/11/2020

21

Time of Displacement

Stiff material

Less stiff material

Energy required to Initiate cracking

Energy absorbed after crack commencement

First Crack

Strain Rate

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Not much deflection, but almost instantaneous –Very High Strain Rate

Catch

Snap Fit Installation

Strain Rate

Jeffrey A. Jansenjeff@madisongroup.com

41

42

12/11/2020

22

TIME UNDER LOAD

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Creep is…..

the tendency of a solid material to deform permanently under the influence of constant stress (tensile, compressive, shear, or flexural). It occurs as a function of time through extended exposure to levels of stress that are below the yield strength of the material. 

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Time Under Load

43

44

12/11/2020

23

Time Under Load

• Low to moderate forces exerted over an extended me → lower duc lity.  Can result in bri le fracture 

in normally ductile plastics

• Inherent viscoelastic nature of polymers leads to time dependency

• Prolonged static stresses lead to a decay in apparent modulus through localized molecular reorganization of polymer chains

• At stresses below the yield point molecular reorganization includes disentanglement as there is no opportunity for yielding 

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Initial Placement

Time Under Load

45

46

12/11/2020

24

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Starting Placement

Initial Deformation

Day 1

Time Under Load

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Starting Placement

Initial Deformation

Day 10

Time Under Load

47

48

12/11/2020

25

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Starting Placement

Initial Deformation

Day 100

Time Under Load

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparen

t Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimePolyacetal

Creep at 25 °C

Time Under Load

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

1000 MPa

11,000 hours

Jeffrey A. Jansenjeff@madisongroup.com

49

50

12/11/2020

26

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Starting Placement

Initial Deformation

Day 100

Time Under Load

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Starting Placement

Initial Deformation

Day 1000?

Time Under Load

51

52

12/11/2020

27

Why the difference?

Viscoelastic nature of polymers

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Metals: Ionic Bondingvs.

Polymers: Covalent & Intermolecular Bonding

Jeffrey A. Jansenjeff@madisongroup.com

Time Under Load

Brittle Fracture

Normalized Creep Rate

Adapted from NIST modelhttp://www.metallurgy.nist.gov/

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Time Under Load

53

54

12/11/2020

28

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Failure Through Craze Formation

Jeffrey A. Jansenjeff@madisongroup.com

Time Under Load

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Higher Applied Stress

Lower Applied Stress

Stress Level – Ductile vs. Brittle

608‐231‐1907jeff@madisongroup.com

Time Under Load

55

56

12/11/2020

29

Time Under Load

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Time

Stress

1,000 psi

5,000 psi

7,500 psi

2,500 psi

9,000 psi

10,000 psiDuctile Failure

Brittle Failure

Yield Point

Source: “Understanding the Consequence of Ductile-to-Brittle Transitions in a Plastics Materials Failure”, Published and Presented at ANTEC, 2008

Jeffrey A. Jansenjeff@madisongroup.com

CHEMICAL CONTACT ENVIRONMENTAL STRESS CRACKING

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

57

58

12/11/2020

30

Environmental Stress Cracking is…

the premature embrittlement and subsequent cracking of a plastic due to the simultaneous and synergistic action of stress and contact with a chemical agent

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical

Plastic

Stress

Chemical Contact ‐ ESC

Environmental Stress Cracking

Jeffrey A. Jansenjeff@madisongroup.com

59

60

12/11/2020

31

• No chemical reaction between the polymer and the chemical agent

• No molecular degradation• The plastic would undergo stress cracking in

air given sufficient time• The chemical accelerates the stress cracking

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Environmental Stress Cracking

Jeffrey A. Jansenjeff@madisongroup.com

• Chemical agent permeates into molecular structure → lower duc lity

• Mechanism includes interference with inter‐molecular forces bonding polymer chains

• Reduces the energy required for disentanglement/slippage to occur producing a shift in the preferred mechanism from yielding

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Environmental Stress Cracking

Jeffrey A. Jansenjeff@madisongroup.com

61

62

12/11/2020

32

Chemical Contact ‐ ESC

The Madison Group                                                    608‐231‐1907

0 0

Chemical Agent

Ductile to Brittle TransitionsJeffrey A. Jansen

jeff@madisongroup.com

Chemical Contact ‐ ESC

The Madison Group                                                    608‐231‐1907

45

Day 1

45

Ductile to Brittle TransitionsJeffrey A. Jansen

jeff@madisongroup.com

63

64

12/11/2020

33

Chemical Contact ‐ ESC

The Madison Group                                                    608‐231‐1907

45

Day 10

45

Ductile to Brittle TransitionsJeffrey A. Jansen

jeff@madisongroup.com

Chemical Contact ‐ ESC

The Madison Group                                                    608‐231‐1907

4545

Day 100Ductile to Brittle Transitions

Jeffrey A. Jansenjeff@madisongroup.com

65

66

12/11/2020

34

Diagram from Smithers RAPRAhttp://www.rapra.net

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Jeffrey A. Jansenjeff@madisongroup.com

Chemical Contact ‐ ESC

• Bent Strip Test

• ASTM D 543 Practice B –Mechanical Stress / Reagent Exposure

• Chemical Contract While Under Stress

• Inspection for Crack Formation

The Madison Group                                                    608‐231‐1907

Ductile to Brittle TransitionsJeffrey A. Jansen

jeff@madisongroup.com

67

68

12/11/2020

35

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

69

70

12/11/2020

36

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

71

72

12/11/2020

37

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Bend Fixture

Plastic Sample

Chemical Agent

Chemical Contact ‐ ESC

Jeffrey A. Jansenjeff@madisongroup.com

73

74

12/11/2020

38

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Elevated stress zone at defect, scratch, crack Typically these defects range in stress concentration factor from 1 to 50. 

Chemical Contact ‐ ESC

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Chemical agent permeates into plastic surface –preferentially at elevated stress field. Localized plasticization via stress enhanced fluid absorption at stress.

Jeffrey A. Jansenjeff@madisongroup.com

75

76

12/11/2020

39

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Jeffrey A. Jansenjeff@madisongroup.com

In response to stress and facilitated by the plasticizing effect of the chemical, the individual segments of the chains rotate, and become aligned parallel to the direction of the maximum strain. Crazes are formed as planar arrays of fine voids normal to the tensile stress.  The voids are separated by ligaments of highly aligned polymer chains.  

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes form and grow within chemically‐affected zone

Jeffrey A. Jansenjeff@madisongroup.com

77

78

12/11/2020

40

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes form and grow within chemically‐affected zone

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes rupture to form a crack

Jeffrey A. Jansenjeff@madisongroup.com

79

80

12/11/2020

41

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes form and grow within chemically‐affected zone in front of crack

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes rupture to extend the crack

Jeffrey A. Jansenjeff@madisongroup.com

81

82

12/11/2020

42

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes form and grow within chemically‐affected zone in front of crack

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Chemical Contact ‐ ESC

Crazes rupture to extend the crack

Jeffrey A. Jansenjeff@madisongroup.com

83

84

12/11/2020

43

DYNAMIC STRESS

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Fatigue is….

“the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values are less than the yield strength and tensile strength of the material”

Like creep, fatigue produces an apparent decay in strength.

Dynamic Stress

Jeffrey A. Jansenjeff@madisongroup.com

85

86

12/11/2020

44

Dynamic Stress

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Fatigue:

The cyclic deformation of a plastic resulting from dynamic loading through stress or strain control

Jeffrey A. Jansenjeff@madisongroup.com

Dynamic Stress

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

• Low to moderate forces exerted intermittently over an extended  me → lower duc lity.  Can result in brittle fracture in normally ductile plastics

• Cyclic stress application leads to a decay in apparent modulus through localized molecular reorganization of polymer chains

• At stresses below the yield point molecular reorganization includes disentanglement as there is no opportunity for yielding 

Fatigue

Jeffrey A. Jansenjeff@madisongroup.com

87

88

12/11/2020

45

Dynamic Stress

Premise of fatigue is basic:

If a component is subjected to stress repeatedly, the material undergoes a decay in strength.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

• Lexan 101 Polycarbonate

• Tensile Strength:    69 MPa

• Fatigue Strength: 59 MPa at 70,000 cycles

45 MPa at 100,000 cycles

31 MPa at 750,000 cycles

7 MPa at 2,500,000 cycles

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Dynamic Stress

89

90

12/11/2020

46

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Under conditions of cyclic loading, the decay in strength occurs more rapidly than under conditions of static stress.

Dynamic Stress

Jeffrey A. Jansenjeff@madisongroup.com

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Hysteresis vs. Brittle Fracture

Taken From “Fatigue of Engineering Plastics” by Hertzberg and Manson

Dynamic Stress

Jeffrey A. Jansenjeff@madisongroup.com

91

92

12/11/2020

47

REDUCED MOLECULAR WEIGHT MATERIAL SELECTION

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Weight

• Lower molecular weight → lower duc lity

• Level of entanglement is different

• Reduces the energy required for disentanglement/slippage to occur – shifts preferred mechanism from yielding

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

93

94

12/11/2020

48

Molecular Weight

Multiple entangled chains made up of repeating units

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Weight

16+1+1=18Sodium Chloride (Salt)

23+35=58

6.02 X1023 molecules / mole (molecular weight mass in grams)

Water

Molecular Weight: The sum of the atomic weights of the atoms in a molecule.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

95

96

12/11/2020

49

Molecular Weight

Polyethylene

(12x2 + 1x4) x n

Polycarbonate

(12x16 + 1x14 + 16x3) x n

6.02 X1023 molecules / mole (molecular weight mass in grams)

Molecular Weight: The sum of the atomic weights of the atoms in a molecule.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Sodium Chloride

Polyethylene

Polycarbonate

1 mole = 18 grams

1 mole = 58 grams

1 mole = ~500 lbs.

1 mole = ~50 lbs.

Most commercial polymers have an average molecular weight between 10,000 and 500,000

Molecular Weight

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Water

Jeffrey A. Jansenjeff@madisongroup.com

97

98

12/11/2020

50

Ref: Ezrin, Plastics Failure Guide

Change of slope

around 20K

Condensation polymers: like PC & NylonPC Standard Grades @ 20K-35KPA Standard Grades @10K-40K

Addition polymers like PS and PMMA

Molecular Weight

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Weight

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

99

100

12/11/2020

51

Tensile Strength Decreases

Elongation at Break

Yield Strength

Impact Resistance

Toughness

Hardness

Abrasion Resistance

Thermomechanical Stability

Chemical Resistance

Creep and Fatigue Resistance

Molecular Weight

Selecting a Lower Molecular Weight Resin

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Increasing MW

Molecular Weight

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

101

102

12/11/2020

52

Molecular Weight

MFR (g/10min) Notched Izod (ft‐lb/in) Unotched Izod (ft‐lb/in) Strain @ Break (%)

2.5 1.5 25.0 75

9.0 1.3 20.0 60

27.0 1.0 17.0 40

Effects of Molecular Weight on the Impact Properties of Acetal Copolymer

Ref: Mike Sepe

Longer molecular chains produce a higher level of entanglement 

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Weight

MFR (g/10min) Fatigue Endurance Limit @ 107 Cycles (psi)

2.5 4000

9.0 3300

27.0 3000

Effects of Molecular Weight on the Fatigue Properties of Acetal Copolymer

Ref: Mike Sepe

Longer molecular chains produce a higher level of entanglement 

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

103

104

12/11/2020

53

Molecular Weight

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

DBTT - Molecular Weight RealtionshipGeneral Purpose Polycarbonate

0

2

4

6

8

10

12

14

16

18

20

-40 -20 0 20 40 60 80 100 120

Temperature (deg F)

No

tch

ed

Izo

d (

ft-l

b/in

.)

4 MFR

6 MFR

10 MFR

15 MFR

22 MFR

Source: Dow Plastics

DBTT vs. Molecular Weight

Jeffrey A. Jansenjeff@madisongroup.com

MOLECULAR DEGRADATION

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

105

106

12/11/2020

54

Molecular Degradation Mechanisms 

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

• Oxidation

• Hydrolysis

• Chain Scission

• Side Chain Alteration

• Destructive Crosslinking

Molecular Weight Changes Permanently Through Chemical Reactions

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Degradation

• Reduc on in molecular weight → lower duc lity

• Loss of entanglement associated with shortening of polymer chains

• Reduces the energy required for disentanglement/slippage to occur and shifts the preferred mechanism from yielding

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Degradation

107

108

12/11/2020

55

OxidationThermal oxidation is the chemical reaction of a polymeric material with oxygen from an oxidizing material, including air.  The rate of the degradation reaction increases with increasing temperatures.

The oxygen in the air is the reactant and ambient heat is the energy source which drives the reaction.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Degradation

Oxidation• Most polymers undergo thermal oxidation.

• Oxidation takes places via free radical formation.

• Chemical reaction – incorporation of oxygen into the backbone structure, creates carbonyl structural groups.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Degradation

109

110

12/11/2020

56

Effects of Oxidation• Loss of Molecular Weight

– Embrittlement– Loss of Mechanical Integrity– Cracking– Catastrophic Failure

• Conjugation– Discoloration

– Loss of Gloss

– Loss of Transparency

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

• Evolution of Volatiles– Foul Odor Generation

• Carbonyl Formation– Loss of Dielectric Properties

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Degradation

MOLECULAR FUSION

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

111

112

12/11/2020

57

Molecular Fusion

• Less molecular entanglement → lower ductility

• Less intermolecular force to overcome disentanglement

• Knit lines and molecular orientation

• Molecular response shifts to disentanglement/slippage away from yielding because it requires less energy and with little entanglement opportunities for yielding are diminished

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Fusion

Knit Lines• Knit lines are areas in the molded part where two or more flow 

fronts converge. 

• This area generally has lower strength than the other areas of the part.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

113

114

12/11/2020

58

Molecular Fusion

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Knit Lines in Nylon 6 ‐ Conditioned

Molecular Fusion

Knit Lines• Flow analysis programs can be used to anticipate knit lines, and 

direct them away from anticipated high stress areas of the part.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

115

116

12/11/2020

59

Molecular Fusion

Knit Lines• Knit lines generally form on the opposite side of obstacles which 

are in the way of the normal flow path, such as pins that form holes in the part or bosses designed to accept inserts.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Molecular Fusion

Additive Manufacturing

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

0

10

20

30

40

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Stress (MPa)

Strain (%)

PET

Injection Molded

Additive Manufactured

117

118

12/11/2020

60

STRESS CONCENTRATION

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Stress Concentration

• Higher levels of stress concentra on → lower duc lity

• Irregularities in a structure subjected to loading may produce high localized stress (stress concentration). 

• These irregularities or stress risers include holes, sharp corners, notches, abrupt changes in wall thickness, or other geometric discontinuities.

• Notches or sharp corners introduce stress concentrations and can induce premature failures, especially during impact. 

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

119

120

12/11/2020

61

Stress Concentration

• The majority of plastics are notch sensitive and the increased stress at the notch is called the “Notch Effect”.

• Sharp corners results in stress concentra on → lower ductility.

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Poor design

Internal sharp corner

Failure

Failure Better design

R

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Stress Concentration

Notch Radii

Jeffrey A. Jansenjeff@madisongroup.com

121

122

12/11/2020

62

Stress Concentration

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Stress concentration factor

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1 1.25Internal radius/part wall thickness (R/T)

R

Force

T

Internal radius stress concentration factor graph for cantilever beam

Stress Concentration

Sharp Rounded

Sharp corner

Recommended

0.125

Jeffrey A. Jansenjeff@madisongroup.com

Molecular WeightMolecular Weight Distribution

TemperatureRate of Loading

CrystallinityFiller ContentPart Radius

Wall Thickness TransitionsInternal StressesChemical ContactPlasticizer Content

Fusion

BRITTLElower

broaderlower

higherhigherhigher

smallerabrupthigher

yes/varies lessless

DUCTILEhighernarrowerhigherslowerlowerlowerlargergraduallowerno/variesmoremore

Ductile to Brittle Transitions The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Ductile‐to‐ Brittle Transitions

123

124

12/11/2020

63

Questions?

Ductile to Brittle Transitions

The Madison Group                                                    608‐231‐1907

Jeffrey A. Jansenjeff@madisongroup.com

Thank You

Jeffrey A. JansenThe Madison Group608‐231‐1907jeff@madisongroup.com

125