DEVELOPMENT AND VALIDATION OF MODEL FOR AEROSOLS TRANSPORTATION IN BOUNDARY LAYERS A.S. Petrosyan,...

Post on 12-Jan-2016

216 views 1 download

Tags:

Transcript of DEVELOPMENT AND VALIDATION OF MODEL FOR AEROSOLS TRANSPORTATION IN BOUNDARY LAYERS A.S. Petrosyan,...

DEVELOPMENT AND VALIDATION OF MODEL FOR AEROSOLS TRANSPORTATION IN BOUNDARY LAYERS

A.S. Petrosyan, K.V. Karelsky, I.Smirnov

Space Research Institute

Russian Academy of Sciences

Objectives

• To understand the structure and governing mechanisms of the boundary layer processes specifically, the influence of the thermal and orografyc inhomogeneity

• To analyze the structure of wind flows over complex terrain in close proximity to the surface

• To analyze the structure of wind flows over complex terrain in the important case non stationary conditions of dust lifting and transportation

Traditional boundary layer model

• No slip conditions for wind velocity on thesolid surface

• Prandtl hypothesis: fast velocity gradientsbrings the balance of viscosity and inertiaforces effects

• The viscous dumping is almost impossibleto neglect near surface even with highReynolds number

Details of our boundary layer model

• To abandon no-slip conditions, horizontal velocity must be computing parameter

• To reduce order of the used equations

• To ensure high gradients of the flow near surface in consequence of Prandtl hypothesis

• To provide viscous dissipation by means of the scheme viscosity

Model assumptions

• Volume concentration of the rigid particles is moderately high

• Viscosity and heat condition of the fluid and solid phases do not take effect at impulse and energy transfer in macroscopic scales

• Characteristic of the time scales of atmosphere motions are in excess of the interphase relaxation time

Governing Equations

0z

v)pe(

y

v)pe(

x

v)pe(

t

e

0z

)vp(

y

)vv(

x

)vv(

t

)v(

0z

)vv(

y

)vp(

x

)vv(

t

)v(

0z

)vv(

y

)vv(

x

)vp(

t

)v(

0z

)v(

y

)v(

x

)v(

t

zyx

2zzyzxz

zy2yyxy

zxyx2xx

zyx)

2

vvv(e

2z

2y

2x

.volumeunitperenergyernalint

,volumeunitperenergytotale

,velocityv,v,v

,pressurep

,density

zyx

Model physics Model of the effective perfect gas for atmosphere with solid particles

phaseeachofdensity

phaseeachandmixtureforcapacitiesthermalc,c,c

phasefluidandmixturefortstanconsgasR,R

1xx,x

cxcxc,RxR

RTp,cT

i

21

1

21i

i

221111

Advantages of the atmosphere model

Equations for dusty atmosphere are similar perfect fluid equations

with changed specific heat ratio and sound speed Cs

1c/)Rc(

s11

1s1s C

xC

pC

Possibility to describe uniformly atmosphere flows over complex terrain

in the conditions of impurity lifting and deposition

Integral form of the equations

0dtdxdyy

v)pe(dtdxdy

x

u)pe(dtdxdyt

e

0dtdxdyy

)vp(dtdxdy

x

uvdtdxdy

t

v

0dtdxdyy

uvdtdxdy

x

)up(dtdxdy

t

u

0dtdxdyy

vdtdxdy

x

udtdxdyt

LLL

L

2

LL

LL

2

L

LLL

L-arbitrary volume

Integral form of the equations after using Gauss theorem

0vdtdx)pe(udtdy)pe(edxdy

0dtdx)vp(uvdtdyvdxdy

0uvdtdxudtdy)up(udxdy

0vdtdxudtdydxdy

L

L

2

L

2

L

Computational algorithm |)CD|cosvR|AB|cosvR|BC|vR|AD|vR|CD|sinuR|AB|sinuR(

SRR )3()3(

1)1()1(

1)2()2(

1)4()4(

1)3()3(

1)1()1(

1ABCD

11

|)CD|cosvR|AB|cosvR|BC|vR|AD|vR|CD|sinuR|AB|sinuR(S

RR )3()3(2

)1()1(2

)2()2(2

)4()4(2

)3()3(2

)1()1(2

ABCD22

)cos|CD|vuRcos|AB|vuR

|BC|vuR|AD|vuRsin|CD|)uRP(sin|AB|)uRP((S

uRuR

)3()3()3(1

)1()1()1(1

)2()2()2(1

)4()4()4(1

2)3()3(1

)3(2)1()1(1

)1(

ABCD11

)sin|CD|vuRsin|AB|vuR|AD|)vRP(

cos|CD|)vRP(|BC|)vRP(cos|AB|)vRP((S

vRvR

)3()3()3(1

)1()1()1(1

2)4()4(1

)4(

2)3()3(1

)3(2)2()2(1

)2(2)1()1(1

)1(

ABCD11

)cos|CD|v)PE(cos|AB|v)PE(

|BC|v)EE(|AD|v)PE(sin|CD|u)PE(sin|AB|v)PE((S

EE

)3()3()3()1()1()1(

)2()2()2()4()4()4()3()3()3()1()1()1(

ABCD

Details of Godunov method

• Divergent difference scheme

• Provides for the viscosity by local tangential gaps at every step of the grid

• Such tangential gaps do not manifest themselves on the outer flow scale and make available dissipation energy

Digitization procedure

• Computational domain is sectored on curved trapezium grid by two set of lines

• Transformed computational space consists of rectangles

• If each grid hydrodynamic quantities are replaced by certain average constant at present instants of time

• Beginning with initial constant in each grid we make computations step by step at time intervals of interest to us