Defects in Hard-Sphere Colloidal Crystals

Post on 28-May-2022

19 views 0 download

Transcript of Defects in Hard-Sphere Colloidal Crystals

Defects in Hard-Sphere Colloidal Crystals

CitationPersson Gulda, Maria Christina Margareta. 2012. Defects in Hard-Sphere Colloidal Crystals. Doctoral dissertation, Harvard University.

Permanent linkhttp://nrs.harvard.edu/urn-3:HUL.InstRepos:10406377

Terms of UseThis article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your StoryThe Harvard community has made this article openly available.Please share how this access benefits you. Submit a story .

Accessibility

µ

∆Vm = 0.19Vo Vo

∆Sm = 0.49kBT

φ

φ φ

φ

φ

×

µ

µ

µ

µ

µ

µm3

µ 3

µm

µm

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 2 µ 2

∑∑

16a < 112 > → →

µ

a µ

µ

α

FPK

FPK Fl

Fd

1

Σ

2

µ σ σ

3 3.9 × 10−15

3

fRawStock

fwater

fwater = 0.369%− fRawStock

fRawStock

σd

vsettling g

Fd Fg

vsettling

Fg = mg =4

3πa3∆ρg

a d

∆ρ

η v

a

Fd = 6πηav

vsettling

vsettling =4a2∆ρg

18η

η ∼

1.6×10−3 7×10−7

a2

Uthermal =3kBT

2

Ukinetic =mv2

2

vb

< vb >=

√3kBT

m

kB

2× 10−3 104

φ

F = U − TS

Uthermal =32kBT

F = (3

2kB − S)T

φ

φ

φ

φ

φ ∼

φ

P ρ kB

P = ρkBTZ(φ)

Z φ

Z(β) = 2.557696 + 0.1253077β + 0.1762393β2 − 1.053308β3

+2.818621β4 − 2.921934β5 + 1.118413β6 +12− 3β

β

β

β(φ) = 4(1− φ

φo)

φo

ρSilicaRawStock3

fRawStock

VRawStock = VCellfRawStock

VCell

ACell hCell

VRawStock = ACellhCellfRawStock

mSilica VRawStock

ρSilicaRawStock

mSilica = VRawStockρSilicaRawStock = ACellhCellfRawStockρSilicaRawStock

VSilica mSilica

ρSilica 3

VSilica =mSilica

ρSilica=

ACellhCellfRawStockρSilicaRawStock

ρSilica

VCrystal VSilica

ΦCrystal

VCrystal =VSilica

ΦCrystal=

ACellhCellfRawStockρSilicaRawStock

ρSilicaΦCrystal

VCrystal

ACell hCrystal

hCrystal =hCellfRawStockρSilicaRawStock

ρSilicaΦCrystal

fRawStock ΦCrystal

hCell hCrystal

hCrystal =hCellfRawStock50mg/cm3

ΦCrystal2 g/cm3= 0.025

hCellfRawStock

ΦCrystal

φφ φ

φφ

dc

Ukinetic =mv2b2

mgd d

dc =v2b2g

vb dc ∼ 100

∼ 700

fRawStock

hCell

3

G

G = H − TS

∆S

∆H

∆H ∆h

∆H = n∆h

∆H

p ∆Vv

∆Vv = Vp +∆Vrelax

Vp ∆Vrelax

∆H = n p∆Vv

∆S

∆sc ∆sv ∆sc

∆Sc = kBln((N + n)!

N !n!) = kB[(N + n)ln(N + n)−Nln(N)− nln(n)]

∆G = n∆h− nT∆sv − kBT [(N + n)ln(N + n)−Nln(N)− nln(n)]

δ∆G

δn= ∆h− T∆sv − kBT [ln(N + n) +

N + n

N + n− ln(n)− n

n]

= ∆h− T∆sv + kBT ln(n

N + n) = 0

xv

xv =n

N + n= e

−∆h−T∆svkBT

10−6−10−3

10−4

10−7− 10−4

10−3 10−2 − 10−3

Γ

∆Gm = ∆Hm − T∆Sm = p∆Vm − T∆Sm

Γ = ν × exp(∆Gm

kBT) = ν × exp(

p∆Vm − T∆Sm

kBT)

kB ∆Vm

∆Sm

ν

D λ

ν =6D

λ2

D η

kB a

D =kBT

6πηa

λ 2a

ν

ν =kBT

4πηa3

kB = 1.38× 10−23 T = 300 η = 1.6× 10−3

a = 1.55× 10−6/2 µ ν ∼ 0.6 −1.

∆Va

∆Sa ∆Ga =

p∆Va − T∆Sa xv

xv2

xv2x2v

= exp(−∆Ga

kBT) = exp(

T∆Sa − p∆Va

kBT)

µ

×

xtemplate ytemplate

µ

ax ay

az xtemplate bx by

bz ytemplate

(ax× δx)2 + (ay × δy)2 + (az × δz)2 = x2template

(bx× δx)2 + (by × δy)2 + (bz × δz)2 = y2template

δx δy δz µ

ztemplate

µ µ

DBody

µ

D2Body = x2 + y2 + z2

z =√

D2Body − x2 − y2

µ

z =√

D2Body − x2 − y2 =

√(2d)2 − 2d2 =

√2d =

√2 ∗ 1.56 = 2.21µ

εz

εx εy ν

εz + εxν + εyν = 0

εx,y =1.63− 1.56

1.56= 4.5%

εz = −2εx,yν = −2× 0.045× 0.37 = −3.3%

ztemplate

ztemplate = z(1 + εz) = 2.21× (1− 0.033) = 2.14µ

(cx× δx)2 + (cy × δy)2 + (cz × δz)2 = z2template

δx δy δz

δx = 0.1538µ

δy = 0.1553µ

δz = 0.1099µ

µ

µ

Nparticles(111) 36× 3 = 108

VBox(111)

VBox(111) µ 3

µ 3

NParticles(100)

VBox(100) µm3

µ 3

µ 3

µ 3

µ

µ

µ µ

u

u =cr

r3= −c∇1

r

∆V =

∫udS = u4πr2

u =∆V

4πr2

u1u2

=∆R1

∆R2=

R22

R21

∆R1 =2.292

1.622(2.29− 2.26)µm = 0.06µm

∆R1 µ

R1 µ

µ

µ

∆R1 µ

µ 3 µ 3

µ

µ

µ µ

µ µ

µm3

µ 3

µ

µ

µmµm

µ µ 3

µ 3

µ 3

P (vf ) =γ

< vf >exp

−γvf< vf >

vf < vf >

γ

µ −3 −γ/< vf > < vf >

µ 3

< vparticle >=< vo > + < vf >=4

3(1.55

2)3π/0.74 + 0.052 = 2.69µm3

vo

vparticle

< vf >

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µ 3

µm2

µ 2

∆Vv

∆Vv = ∆Vp +∆Vrelax

PVoNkBT

µ 3

µ 3

µ 2

µ 2

∆Vrelax ∆Vv

µ µ µ 3

µ 3 µ 3 µ 3

µ 3

µ 3 µ 3 µ 3

µ 3

∆Vrelax ∆Vv

µ µ µ 3 µ 3

µ 3 µ 3 µ 3 µ 3

µ 3 µ 3 µ 3 µ 3

µ 3

ρ

N/V pkBT = ZN

V

PVo

NkBT=

ZVo

V

Γ =1

1115× 1

14× 3600= 1.8× 10−8sec−1

ν = 0.6 −1

∆GmkBT

Γν

PVoNkBT

PVoNkBT

PVoNkBT

Γν 1021

µ 3

rv1 rv2

1

12(11∑

i=1

ri + rv2) = rv1

1

12(11∑

j=1

rj + rv1) = rv2

ri rj

µm3 µm3

µm3

∆Va

∆Ha

∆Sa

∆Ga = ∆Ha − T∆Sa

∆Ga

µ 3

µ 3 ∆Vv

∆Vv = 18× (3.13− 2.75)µm3 = 6.84µm3

µ 3

∆Vv Vrelax µ 3

Γ =4

18× 1

13.5× 3600= 4.6× 10−6sec−1

√4 ±2.3 × 10−6

ν = 0.6 −1

∆GmkBT ±0.7

logΓ

ν= − p∆Vm

kBT+

∆Sm

kB

Vo

logΓ

ν= − pV0

kBT

∆Vm

V0+

∆Sm

kB

∆VmV0

∆SmkB

Γ =3

5× 1

13.5× 3600= 1.2× 10−5sec−1

√4 ±0.7 × 10−5

ν −1 ∆GmkBT

±0.8

∆GmkBT

Γ −1 ∆GmkBT

1.8× 10−8

(4.6± 2.3)× 10−6 11.8± 0.7

(1.2± 0.7)× 10−5 10.8± 0.8

4

16a < 112 > → → →

√22

∑∑

σy

α

σy = σo + kd−12

110 111

a

±12a[011] ±1

2a[110]

π ±12a[101]

π

T

1

2a[011] → 1

2a[011]T

±12a[110],±

12a[101]

12

1

2a[110] → 1

2a[110]T + 2× 1

6a[112]

1

2a[110] → 1

2a[101]T +

1

6a[211]

12

Σ

16 [112]

16a[112]

pV = Z(V )kBT

K = −V dp

dV

K =ZkBT

V(1− V

Z

δZ

δV)

µ

γ

µ =1

V

δ2F

δγ2

γ

Uthermal

µ = −T

V

δ2S

δγ2

µ

o

a6

(α)

α

ε =bcos(α)

L

Uelastic =1

2Eε2elastich

εelastic

ε0 ε

εelastic = ε0 − ε

Uelastic

Uelastic =1

2E(ε0 −

bcos(α)

L)2h

Udislocation =1

L

µb2

4π(1− ν)ln

R

ro

ν

ro

1

L=

ε0bcos(α)

− 1

4π(1− ν)

µ

E

1

cos2(α)

1

hln

4h

b

hc

hc =1

4π(1− ν)

µ

E

1

ε0

b

cos(α)ln

4hcb

E

µ= 2(1 + ν)

Z

zo

Uelastic =1

2Eε20z

Uelastic

Felastic =1

2LEε20

Frepel =µ(bcos(α))2

4π(1− ν)z

zo

zo =(bcos(α))2

2π(1− ν)Lε20

µ

E

µm

µ

1.025a

16a < 112 > → →

a µ

a

Aparticle

Aparticle =a2√2

µ

Aparticle

Nlayer =Atotal

Aparticle=

√2L2

a2

µ Nlayer

µ

µ aµ

h(Number of layers) = 0.022t+ 28.38 (0 ≤ t ≤ 900min)

tlayera

2√2

µ

h(µm) = 0.018t+ 23 (0 ≤ t ≤ 900min)

J

vsettling

nColloidsInSolution

J = vsettlingnColloidsInSolution

Γ

ACrossSection

Γ = J A = vsettlingnColloidsInSolutionACrossSection

nColloidsInSolution

ρSilicaInRawStock

mcolloid

fRawStock

nColloidsInSolution =ρSilicaInRawStock

mcolloidfRawStock

Γ Nlayer =ACrossSection

Aparticle=

ACrossSection√2a2

tlayer

hTheory

hTheory =Γ

Nlayertlayer =

vsettlingρSilicaInRawStockfRawStockAparticle tlayermcolloid

ρSilicaInRawStock vsettling mcolloid Aparticle

tlayer fRawStock

µ

ρColloidsInSolution

o

o o

o

(x, y, z)

µ

[x00] → 1√6[121]

[0y0] → 1√3[111]

[00z] → 1√2[101]

x 1√6

2√6

1√6

y 1√3

1√3

1√3

z 1√2

1√2

[x00] → 1√6[121]

[0y0] → 1√3[111]

[00z] → 1√2[101]

x 1√6

2√6

1√6

y 1√3

1√3

1√3

z 1√2

1√2

a6 [112]

a6 [112]

a6 [112]

bt

a

6[112]LeftCrystalSystem =

a

6[112]LeftCrystalSystem+

a

6[112]RightCrystalSystem+bt

bt = −a

6[112]RightCrystalSystem

bt

bt = [0.2556,−0.8944,−0.1278]

bt,exp = [0.2756,−0.7203,−0.2759]

µ

µ

AperParticle =

√3a2

4

a

µ

L2

L1

∆ε =b

L1

∆ε =b

L1(A

hL2) =

bA

V

Aeffective

L1

Aeffective = Asinα

α o

L1

beffective = bcosα

α

∆ε =bcosαAsinα

V

∼ 8.3×10−4

∼ 9.9× 10−4

∼ 4.0 × 10−4

∼ 6× 10−3

∼ 2 × 10−3

FPK

FPK b ¯σ

ds

FPK = (¯σ · b)× ds

FPK = Fd + 2Fl

FPK

FPK Fl

Fd

FPK = Fd + Fl

Fd =4η

π∆Sv

∆S

µ η 1.6×10−3

µ

1.5× 10−15

Fl =1

2µb2

µ = 2 b = 0.81µ 6.5×10−13

FPK = σ b∆S

σ = µ∆ε = µ(εo − ε)

∆ε =12µb

2

µb∆S= 8× 10−3

ε εo−ε

∆S

∆r FPK FPK∆r

FPK2∆r

FPK(3∆r) = T (3∆r) + 2T∆S

FPK

FPK

∆S=

T

∆S+

2T

3∆r

T∆S 8 × 10−3µb

∆εb

∆εb = 8× 10−3(1 +2∆S

3∆r)

∆r µ

εo − ε

5

∆Vm = 0.19Vo Vo

∆Sm = 0.49kBT

6

×10−4

µ × µ

× 2

o

7

8

µ