Classical simulations of quantum circuits · K.K. (UJ) Classical simulations of quantum circuits...

Post on 01-Aug-2020

4 views 0 download

Transcript of Classical simulations of quantum circuits · K.K. (UJ) Classical simulations of quantum circuits...

Kamil Korzekwa

Faculty of Physics, Astronomy and Applied Computer Science,Jagiellonian University, Poland

Classical simulations of quantum circuitsResource-theoretic approach to quantum computing

K.K. (UJ)

1. Motivation

2. Background

3. Simulating Clifford + T circuits

4. Unified simulation framework

5. Outlook

Kraków, 21/01/2020Classical simulations of quantum circuits 2/18

Outline

S. BartlettH. Pashayan

In collaboration with:

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 3/18

Motivation

Foundations Applications

Characterization, verification, and validation of near-term quantum devices

Strong evidence that quantum computing is more powerful than classical computing.

What component of quantum theory is responsible for this quantum speed-up?

• Entanglement?• Coherence?

• Contextuality?• Wigner negativity?

• Special combination of the above?

K.K. (UJ)

1. Motivation

2. Background

3. Simulating Clifford + T circuits

4. Unified simulation framework

5. Outlook

Kraków, 21/01/2020Classical simulations of quantum circuits 4/18

Outline

a. (Qu)bits

b. Universal sets of (quantum) gates

c. Simulating quantum circuits

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 5/18

Background: (Qu)bits

E.g. 01 or 11

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 6/18

Background: Universal sets of (quantum) gates

2-qubit gate: CNOTGeneral 1-qubit gate

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 7/18

Background: Simulating quantum circuits

Strong simulation

Weak simulation

Our simulation

K.K. (UJ)

1. Motivation

2. Background

3. Simulating Clifford + T circuits

4. Unified simulation framework

5. Outlook

Kraków, 21/01/2020Classical simulations of quantum circuits 8/18

Outline

a. Pauli gates and stabiliser states

b. Clifford gates and Gottesmann-Knill

c. Step 1: Gadgetizing T gates

d. Step 2: Stabilizer decompositon

e. Step 3: Sampling stabilizers

f. Step 4: Fast norm estimation

K.K. (UJ)

Kraków, 21/01/2020

Classical simulations of quantum circuits 9/18

Simulating Clifford + T circuitsPauli gates and stabiliser states

1-qubit Pauli gates:

n-qubit Pauli gates:

n-qubit stabilizer state: simultaneous eigenstate of n commuting Pauli matrices

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 10/18

Simulating Clifford + T circuitsClifford gates and Gottesmann-Knill theorem

Generators:

CNOT

Gottesmann-Knill theorem: evolution of stabiliser states through Clifford circuitscan be efficiently described on a classical computer.

(n-qubit stabiliser state described by n Pauli operators, each of them is mapped by a Clifford gate to another Pauli operator. Just keep track of stabilisers.)

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 11/18

Simulating Clifford + T circuitsClifford gates and Gottesmann-Knill theorem

Clifford gates are not universal!

Adding a single T gate is enough!

With arbitraryaccuracy

(general circuit) (Clifford+Tcircuit)

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 12/18

Simulating Clifford + T circuitsStep 1: Gadgetizing T gates with magic states

(Clifford+Tcircuit)

(Clifford circuit)Precisely

arXiv:1601.07601

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 13/18

Simulating Clifford + T circuitsStep 2: Stabilizer decomposition of magic states

K.K. (UJ)

• Use Gottesmann-Knill to evolve each term

Kraków, 21/01/2020Classical simulations of quantum circuits 14/18

Simulating Clifford + T circuitsStep 3: Sampling from stabilizer decomposition

(Clifford circuit)arXiv:1601.07601

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 15/18

Simulating Clifford + T circuitsStep 4: Fast norm estimation

Employ the efficient stabilizer norm estimation from arXiv:1601.07601

Final run-time of the algorithm:

K.K. (UJ)

1. Motivation

2. Background

3. Simulating Clifford + T circuits

4. Unified simulation framework

5. Outlook

Kraków, 21/01/2020Classical simulations of quantum circuits 16/18

Outline

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 17/18

Unified simulation framework

Various splittings into free (efficiently simulable) theory and resourceful (exponentially hard to simulate) operations:

• Clifford + T gates

• Gaussian gates + Non-gaussian gate

• Matchgate circuits + SWAP gate

• … Gadgetization

Decomposition of resource states into

free states

Sampling from free-state decomposition

Estimatingprobability

K.K. (UJ) Kraków, 21/01/2020Classical simulations of quantum circuits 18/18

Outlook

New Quantum Resource Group established at Jagiellonian University (leader + 2 post-docs + 2 PhD students + MSc student)

Objective 1: A unified framework for classical simulations of quantum circuits

1. Developing a unified scheme for classical simulation of universal quantum circuits based on a three-step algorithm.

2. Devising novel algorithms with improved run-time scaling by employing alternative free element decompositions (e.g. pure free states). Implementing these algorithms on classical computers and employing them to certify and verify NISQ devices.

3. Investigating the interconversion problem for the resource theory of magic states.