Chaos in open Hamiltonian systems - univie.ac.atChaos in open Hamiltonian systems Tam as Kov acs 5th...

Post on 29-Jun-2020

5 views 0 download

Transcript of Chaos in open Hamiltonian systems - univie.ac.atChaos in open Hamiltonian systems Tam as Kov acs 5th...

Chaos in open Hamiltonian systems

Tamas Kovacs

5th Austrian Hungarian Workshop in Vienna

April 9. 2010

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 1 / 13

What’s going on?

Introduction - phase space of conservative dynamics

Open Hamiltonian system

Long-lived chaotic transients in celestial mechanics

Outlook

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 2 / 13

Phase space structure in conservative systems

H(I,Θ) = H0(I)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 3 / 13

Phase space structure in conservative systems

H(I,Θ) = H0(I) H(I,Θ) = H0(I)+εH1(I,Θ)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 3 / 13

Phase space structure in conservative systems

H(I,Θ) = H0(I) H(I,Θ) = H0(I)+εH1(I,Θ)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 3 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Dvorak et al. Planetary ans Space Science 46 1567 (1993)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Open systems and escape

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Kovacs, T., Erdi, B., Astron. Nach. 104, 801 (2007)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 4 / 13

Transient chaos (chaotic scattering)

Hsu, G.-H., Ott, E. and Grebogi, C., Phys. Lett. A127, 199 (1988)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 5 / 13

Transient chaos (chaotic scattering)

double Cantor fractal structure

Lebesgue measure is zero

relation between geometry anddynamics:

D = 2(

1− κ

λ

)Ott, E., Chaos in dynamical systemcs, Cambridge Univ. Press (1993)Kantz, H., and Grassberger, P., Physica D17, 75 (1985)

The union of all the hyperbolic periodic orbits on the saddle and of allthe homoclinic and heteroclinic points formed among their manifold(or the common part of the stable and unstable manifolds of all theinfinitely many periodic orbits on the saddle).

Tel, T, and Gruiz, M., Chaotic dynamics, Cambridge Univ. Press (2006)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 6 / 13

Transient chaos (chaotic scattering)

Average lifetime of chaos:We are interested in non-escaping

trajectories!

N(t) ≈ N(0)e−κt

τ =1

κ

κ– escape rateτ–average escape time

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 7 / 13

Transient chaos (chaotic scattering)

Average lifetime of chaos:We are interested in non-escaping

trajectories!

N(t) ≈ N(0)e−κt

τ =1

κ

κ– escape rateτ–average escape time

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 7 / 13

Transient chaos (chaotic scattering)

Average lifetime of chaos:We are interested in non-escaping

trajectories!

N(t) ≈ N(0)e−κt

τ =1

κ

κ– escape rateτ–average escape time

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 7 / 13

Transient chaos (chaotic scattering)

Average lifetime of chaos:

Kantz, H., and Grassberger, P., Physica D17, 75 (1985)

We are interested in non-escapingtrajectories!

N(t) ≈ N(0)e−κt

τ =1

κ

κ– escape rateτ–average escape time

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 7 / 13

Examples in astrodynamics

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 8 / 13

Examples in astrodynamics

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 8 / 13

Examples in astrodynamics

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 8 / 13

Examples in astrodynamics

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

κ = 0.126⇒ τ = 7.88 (e = 0.57)

Kovacs, T., Erdi, B., Cel. Mech. and Dyn. Astron.104, 237 (2009)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 8 / 13

Examples in astrodynamics

The Sitnikov problem: H(z , z , t) = z2 −

2√z2+r(t)2

κ = 0.126⇒ τ = 7.88 (e = 0.57)

Kovacs, T., Erdi, B., Cel. Mech. and Dyn. Astron.104, 237 (2009)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 8 / 13

Examples in astrodynamics

Henon-Heiles system:

H(x , y , x , y) =1

2(x2 + y2)

+1

2(x2 + y2) + x2y − 1

3y3

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 9 / 13

Examples in astrodynamics

Henon-Heiles system:

H(x , y , x , y) =1

2(x2 + y2)

+1

2(x2 + y2) + x2y − 1

3y3

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 9 / 13

Examples in astrodynamics

Hill’s problem:

H(Q1,Q2, Q1, Q2) =1

2(Q2

1 + Q22 + Q2

1 + Q22 )− 6(Q2

1 + Q22 )(Q2

1 − Q22 )2

Simo, C., Stuchi, T.J., Physica D140 1-32 (2000)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 10 / 13

Examples in astrodynamics

Hill’s problem:

H(Q1,Q2, Q1, Q2) =1

2(Q2

1 + Q22 + Q2

1 + Q22 )− 6(Q2

1 + Q22 )(Q2

1 − Q22 )2

Simo, C., Stuchi, T.J., Physica D140 1-32 (2000) Kovacs, T., unpublished

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 10 / 13

Examples in astrodynamics

Hill’s problem:

H(Q1,Q2, Q1, Q2) =1

2(Q2

1 + Q22 + Q2

1 + Q22 )− 6(Q2

1 + Q22 )(Q2

1 − Q22 )2

Kovacs, T., unpublished Kovacs, T., unpublished

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 10 / 13

Outlook to atomic physics

Ionization of hydrogen atom in crossed electric and magnetic field:

H(u, v ,Pu,Pv ) =1

2(P2

u + P2v ) +

1

2(u2 + v2)− ε

2Ω(u4 − v4)

+1

4Ω2(u2 + v2)(uPv − vPu) +

1

32Ω4(u2 + v2)3

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 11 / 13

Outlook to atomic physics

Ionization of hydrogen atom in crossed electric and magnetic field:

H(u, v ,Pu,Pv ) =1

2(P2

u + P2v ) +

1

2(u2 + v2)− ε

2Ω(u4 − v4)

+1

4Ω2(u2 + v2)(uPv − vPu) +

1

32Ω4(u2 + v2)3

Uzer, T., Farrelly, D., PRA 52, 2501 (1995)

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 12 / 13

Outlook to atomic physics

Ionization of hydrogen atom in crossed electric and magnetic field:

H(u, v ,Pu,Pv ) =1

2(P2

u + P2v ) +

1

2(u2 + v2)− ε

2Ω(u4 − v4)

+1

4Ω2(u2 + v2)(uPv − vPu) +

1

32Ω4(u2 + v2)3

Uzer, T., Farrelly, D., PRA 52, 2501 (1995) Kovacs, T., unpublished

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 12 / 13

Outlook to atomic physics

Ionization of hydrogen atom in crossed electric and magnetic field:

H(u, v ,Pu,Pv ) =1

2(P2

u + P2v ) +

1

2(u2 + v2)− ε

2Ω(u4 − v4)

+1

4Ω2(u2 + v2)(uPv − vPu) +

1

32Ω4(u2 + v2)3

Kovacs, T., unpublished Kovacs, T., unpublished

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 12 / 13

What have we learned?

Beside the permanent chaos exist a finite time chaotic behavior -chaotic scattering - in open Hamiltonian systems

The main concept is the escape rate i.e. the exponencial decay of thenon-escaped trajectories

There is a well-defined chaotic set - the chaotic saddle - in the phasespace responsible for transient chaos...

...which saddle is more unstable and more extended in size as thechaotic bands

Finite time chaotic transients may appear in suitable dynamicalsystems from atomic physics to celestial mechanics

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 13 / 13

What have we learned?

Beside the permanent chaos exist a finite time chaotic behavior -chaotic scattering - in open Hamiltonian systems

The main concept is the escape rate i.e. the exponencial decay of thenon-escaped trajectories

There is a well-defined chaotic set - the chaotic saddle - in the phasespace responsible for transient chaos...

...which saddle is more unstable and more extended in size as thechaotic bands

Finite time chaotic transients may appear in suitable dynamicalsystems from atomic physics to celestial mechanics

Tamas Kovacs (MPI PKS, Dresden) Chaos in open Hamiltonian systems April 9. 2010 13 / 13