Carboxylic acids, Building Bridges to Knowledge

Post on 26-Jul-2016

219 views 0 download

description

This paper discusses carboxylic acids and the important role of the "COOH" functional group in organic chemistry. Also, the paper discusses the nomenclature of carboxylic acids, the syntheses of carboxylic acids, and the reactions of Carboxylic acids with their associated mechanisms.

Transcript of Carboxylic acids, Building Bridges to Knowledge

1

CarboxylicAcids

BuildingBridgestoKnowledge

Photo a Freeway in Shanghai, China

StructureandNomenclature

Thecarboxylicacidgroupisoneofthemostimportantfunctionalgroupsinorganicchemistry.Carboxylicacidsarenamedbyincludingcarboxylicacidfunctionaspartofthelongestcontinuouscarbonchain.Oncethelongestcontinuouschainincludingthecarbonylofthecarboxylicacidfunctionhasbeenidentified,theattachedsubstituentsarenumberedinsuchamannerthatthecarbonylcarboniscountedasnumber1.Thenameoftheparentstructureisdeterminebydroppingthe“e”ofthealkanefromwhichthecarboxylicacidoriginatedandadd“oicacid,”i.e.,alkane-oicacid.TheIUPACnomenclatureofcarboxylicacidcanbeillustratedinthefollowingmanner.

2

4-methylheptanoicacidAnothermethodfornamingacidsistousetheGreekalphabettoidentifysubstituentsattachedtothelongestcontinuouschainthatincludesthecarbonylcarbonofthecarboxylicacid.4-Methylheptanoicacidis

γ-methylheptanoicacid

Followingaresomecommonnamesofcarboxylicacids.

Unsaturatedcarboxylicacidsfollowthesamesystemofnomenclature.Identifythelongestcontinuouschaincontainingthecarbonylofthecarboxylicacidandthecenterofunsaturation.

3

(E)-2-hexenoicacid

(E)-4-octenoicacidSeveralorganicacidsarefoundinnature.Formicacid,foundinants,canbeobtainedfromthedestructivedistillationofants.Aceticacidisformedinsouringwine.Butyricacidisformedinrancidbutter.Malicacidisformedinapples.Oleicacidisfoundinolives.

Malicacid

Oleicacid (Z)-9-decaoctenoicacid

4

PhysicalPropertiesCarboxylicacidshavehighermeltingpointsandboilingpointsofcomparablemolecularmassalkanes,alkenes,aldehydes,ketones,andalcohols.Thisisduetotheabilityofcarboxylicacidstohydrogenbond:

Carboxylicacidswith1-4carbonatomsaresolubleinwater.AcidityofCarboxylicAcidsElectronwithdrawingsubstituentsattachedtotheαcarbonatomincreasetheacidityofthecarboxylicacid.Theacidityofcarboxylicacidsisrelatedtotheavailabilityofhydroniumionswhenthecarboxylicacidisaddedtowater.

At298KaceticacidhasapKaequalto4.7

ΔGo=-RTlnKaΔGo=-(8.314J/Kmole)(298K)ln(2.0x10-5)ΔGo=+2.7x104J/mol=+27kJ/mole

5

Tounderstandacidityofcarboxylicacids,let’scomparetheacidityofaceticacidwiththecomparablemolecularmassalcohol1-propanol,CH3CH2CH2OH.

At298K1-propanolhasapKaisapproximately16ΔGo=-RTlnKaΔGo=-(8.314J/Kmole)(298K)ln(1.0x10-16)ΔGo=+9.1x104J/mol=+91kJ/moleThevaluesofthestandardGibbsfreeenergy,ΔGo,giveinsightintotheabilityofreactionstobespontaneousornonspontaneous.ThemorenegativetheGibbsfreeenergy,themorespontaneousthereaction.ThehigherthepositivevaluefortheGibbsfreeenergy,thelessspontaneousthereaction.Thestandardfreeenergyforthedissociationofaceticacidhasalowerpositivevaluethanthestandardfreeenergyforthedissociationof1-propanolinwater.Thismeansthataceticaciddissociatestoagreaterextentthan1-propanol;therefore,aceticacidismoreacidic,i.e.,hasmorehydroniumions,H3O+,inaqueoussolution,than1-propanol.Acidityisbasedontheinductiveeffectofthecarbonylgroupandresonanceoftheincipientcarboxylateanion.Thecarbonylgroupofthecarboxylicacidiselectronwithdrawingandwouldattractelectronsfromthenegativelychargedoxygenoftheacetateanion.

Oncetheacetateionisformedinaqueoussolution,itcanberesonancestabilizedasillustratedbelow.

6

ResonanceofthecarboxylateanioncanbeverifiedbymeasuringthebonddistancesoftheC-Obondsincarboxylicacids.Forexample,inaceticacid,theC=Obonddistanceis121pmandtheC-Obondis136pm.

Ontheotherhand,theC-Obondsintheacetateionare125pmeach.

Whenaceticaciddissociatesinaqueoussolutiontoformhydroniumionsandacetateions,thepHoftheresultingsolutiondependsontheinitialconcentrationoftheaceticacid.Forexample,100.mLofa0.100Msolutionofaceticacidat298KwouldhaveapHequalto2.9.Numberofmolesofaceticacid:

100. mL x 1 L1000 mL

x 0.100 molL

= 0.0100 mol

0.0100–xxx

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x0.100 L

⎛⎝⎜

⎞⎠⎟

x0.100 L

⎛⎝⎜

⎞⎠⎟

0.0100 − x0.100 L

⎛⎝⎜

⎞⎠⎟

7

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x2

0.0100 ⎛⎝⎜

⎞⎠⎟

0.0100 − x0.100

⎛⎝⎜

⎞⎠⎟

approximation0.0100>x

Therefore,

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

x2

0.0100 ⎛⎝⎜

⎞⎠⎟

0.01000.100

⎛⎝⎜

⎞⎠⎟

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] = x2

0.0100 x 0.100

0.0100

2.0 x 10−5 = x2

0.0100 x 0.100

0.0100 2.0 x 10−5 x 0.0100 x 0.0100

0.100 = x2

2.0 x 10−5 x 0.0100 x 0.0100 0.100

= x

x=1.4x10-4molwherexisthenumberofmoleshydroniumionsandacetateionsThemolarityofthehydroniumionandacetateionis

x mol0.100 L

[H3O+ ] = [CH3COO− ] = x mol

0.100 L

8

[H3O+ ] = [CH3COO− ] = 1.4 x 10−4 mol

0.100 L

[H3O+ ] = [CH3COO− ] = 1.4 x 10−3 mol

L pH=-log[H3O+]pH=-log(1.4x10-3)pH=2.9ThepHofa0.000100Msolutionofaceticacidat298Kwouldb4.4.

0.000100–xxxwherexisthenumberofmoles,butsincewehave1Lofsolutionthemolarityandthenumberofmolescanberepresentedbyx

Xmustbesolvedusingthequadraticequation:

9

pH=-log[H3O+]pH=-log(3.6x10-5)pH=4.4Ifsodiumacetatewereintroducedintoanaceticacidsolution,theresultingsolutionwouldbeabuffer.AbufferisasolutionthatresistschangestopH.Forexample,ifoneadded0.82gofsodiumacetateto100.0mLofa0.100Msolutionofaceticacid,theresultingbuffersolutionwouldhaveapHof4.7.ThepHofthisbuffersolutionstaysthesameifasmallamountofbaseorasmallamountofacidisaddedtothesystem.Forexample,if1mLofa0.10Mofbaseisaddedtothesystem,thepHremains4.7,becausetheacidneutralizesthebase.ThepHoftheaceticacid/acetatebuffersolutioncanbecalculatedinthefollowingmanner:

10.0mmolxmmolxmmol

10.0mmol10.0mmol10.0mol[CH3COO-Na+]=10.0mmol/100.0mL;[CH3COO-]=10.0mmol/100.0mL;[Na+]=10.0mmol/100.0mL

10

[CH3COO-Na+]=0.100M;[CH3COO-]=0.100M;[Na+]=0.100M

or

Total CH3COO-⎡⎣ ⎤⎦ = 0.100 M + x mol0.1000 L

CH3COOH[ ] = 0.100 M - x mmol100.0 mL

or

CH3COOH[ ] = 0.100 M - x mol0.1000 L

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M + x100.0 mL

⎛⎝⎜

⎞⎠⎟

x100.0 mL

⎛⎝⎜

⎞⎠⎟

0.100 M - x100.0 mL

⎛⎝⎜

⎞⎠⎟

or

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M + x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100 M - x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100M> x mol0.1000 L

Therefore,

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.100 M ( ) x mol0.1000 L

⎛⎝⎜

⎞⎠⎟

0.100 M ( )

Total CH3COO-⎡⎣ ⎤⎦ = 0.100 M + x mmol100.0 mL

11

2.0 x 10−5 = 0.100 M ( ) x

0.1000 L⎛⎝⎜

⎞⎠⎟

0.100 M ( )

2.0 x 10−6 = x

H3O+⎡⎣ ⎤⎦ = x

0.1000 L

H3O+⎡⎣ ⎤⎦ = 2.0 x 10−6 mol

0.1000 L

H3O

+⎡⎣ ⎤⎦ = 2.0 x 10−5 M pH=4.7Ifasmallamountofbaseisaddedtothebuffersolution,thepHwillremainthesame.Forexample,if1.0mLof0.100Mstrongbase,e.g,NaOHisaddedtothebuffersolution,theaceticacidwouldreactwiththesodiumhydroxidetoform0.10mmolofacetate.The0.10mmolofacetateformedwouldhaveminimalaffectonthebuffersolution.CH3COOH+-OH→CH3COO-+H2O10.0mmol-0.10mmol0.10mmol0.10mmol0.10mmol[CH3COOH]=

[CH3COO-]=

0.101M> x mol0.10010 L

and0.099M> x mol0.10010 L

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.101 M ( ) x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.099 M ( )

12

2.0 x 10−5 = 0.101 M ( ) x mol

0.1010 L⎛⎝⎜

⎞⎠⎟

0.099 M ( )

2.0 x 10−5 x 0.099 = x 1.98 x 10−6 mol = x 1.98 x 10−6 mol

0.1010 = H3O

+⎡⎣ ⎤⎦

2.0 x 10−5 M = H3O

+⎡⎣ ⎤⎦ pH=-log[H3O+]pH=-log(2.0x10-5)pH=4.7If1mLofa0.10MofacidisaddedtothesystemthepHremains4.7,becausetheacetateneutralizestheacid.CH3COO-+H3O+→CH3COOH+H2O10.0mmol-0.10mmol0.10mmol0.10mmol0.10mmol[CH3COO-]=

[CH3COOH]=

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.099 M + x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.101 M - x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.099M> x mol0.1010 L

and0.101M> x mol0.1010 L

13

Ka = CH3COO−⎡⎣ ⎤⎦ H3O

+⎡⎣ ⎤⎦CH3COOH[ ] =

0.099 M( ) x mol0.1010 L

⎛⎝⎜

⎞⎠⎟

0.101 M ( )

2.0 x 10−5 = 0.099 M( ) x mol

0.1010 L⎛⎝⎜

⎞⎠⎟

0.101 M ( )

2.0 x 10−5 x 0.101 x 0.10100.099

= x mol

2.06 x 10−6 = x mol 2.06 x 10−6 mol

0.1010 L = H3O

+⎡⎣ ⎤⎦

2.0 x 10−5 mol L

= H3O+⎡⎣ ⎤⎦

pH=-log[H3O+]pH=-log(2.0x10-5)pH=4.7Thesaltofthecarboxylicacidisaconjugatebase,andtheconjugatebaseandthecarboxylicacidformthebuffer.Anequationforthisbuffersolutioncanbederived.ThisequationisreferredtoastheHenderson-Hasselbalchequation.TheHenderson-HasselbalchequationcanbeusedtodeterminethepHofabuffersolution.

Acidconjugatebase

14

Theaceticacid/acetatebuffersolutionwherepH=4.7andthepKais4.7wouldbe

Therefore,inthisbuffersolutiontheconcentrationoftheconjugatebase,[conjugatebase],isequaltotheconcentrationoftheacid,[acid].LacticacidhasapKa=3.9.TheratiooflactateconcentrationtolacticacidconcentrationatpH=7.4canbecalculatedinthefollowingmannerusingtheHenderson-Hasselbalchequation.

15

Thetotalconcentrationofacetatewouldbetheacetatefromthedissociationoflacticacidandtheconcentrationoftheacetatefromthe100%dissociationofsodiumacetate.

Therefore,theconcentrationofsodiumlactatewouldbe3,200timestheconcentrationoflacticacid.ThesedatamaybeusedtoprepareabuffersolutionwithadesiredpHfromaweakbaseanditsconjugateacidoraweakacidanditsconjugatebase.TheselectionofingredientstomakethebuffersolutiondependsonthedesiredpH.ThedesiredpHisdeterminedbyselectingthecorrectweakacid/conjugatebasepairortheweakbase/conjugateacidpair.Theselectionoftheappropriateacid-basepairwouldapproximatethethepHplusorminus1.Forinstance,toprepareabuffersolutionwithapH=4.5,thepKaoftheacidusedshouldbebetween3.5and4.5.Aceticacid-sodiumacetatesolutionwouldbeanappropriatebuffertouse,becausethepKaofaceticacidis4.7.Ifastudenthad100.0mLofa0.100Msolutionofaceticacidand100.0mLofa0.0500Msolutionofsodiumacetate,whatvolumeoftheweakacidsolutionwouldshehavetomixwiththeconjugatebasesolutioninordertoprepare50.0mLofabuffersolutionwithapHof4.5?Thesolutionisrelativelysimple.UsingtheHenderson-Hasselbalchequationinthefollowingformat:

16

Thevolumeoftheacidandthebasemaybecalculatedinthefollowingmanner.Letxequalthevolumeof0.0500Mofthebaseneededtomake50.0mLofbuffer,withapHequalto4.5.Sincethetotalvolumedesiredis50.0mL,then50.0-xequalsthevolumeofacidneededtomake50.0mLofbuffer,withapHequalto4.5.Thenumberofmillimolesofsalt(conjugatebase)wouldequaltheconcentrationofsalttimesthevolumeofsalt,andthenumberofmolesofacidwouldequaltheconcentrationoftheweakacidtimesthevolumeoftheacid.

miilimolesofsalt=x(0.0500)mmolesmillimolesofacid=(50.0-x)0.100mmolesConsequently,themathematicalexpressionforsolvingxwouldbe

x,thevolume(inmL)of0.0500Msodiumacetate,wouldbe28mL50.0mL-28mL=22mL,thevolumeof0.100MaceticacidsolutionTherefore,adding28mLof0.0500Msodiumacetateto22mLof0.100MaceticacidsolutionwillcreateabuffersolutionwithapHequalto4.5.Thesevaluescanbecheckedbysubstitutingtheappropriatenumberofmillimolesper50.0mLintotheHenderson-Hasselbalchequation.

pH=4.5

pH = pKa + log Csalt

Cacid

⎣⎢

⎦⎥

millimoles of salt = VmLx Mmmol/mL

millimoles of acid = VmLx Mmmol/mL

4.5 = 4.7 + log

x(0.0500) mmol50.0 mL

(50.0-x) 0.100 mmol50.0 mL

⎢⎢⎢

⎥⎥⎥

pH = 4.7 + log

1.4 mmol50.0 mL2.2 mmol50.0 mL

⎢⎢⎢

⎥⎥⎥

17

SoapsSoapsaresaltsoflongchainfattyacids.Thelongchainhydrocarbonportionofasoapisthehydrophobic(lipophilic)portionofthesoap,andthehydrophobicportionissolubleinnon-polarsubstancesandtheCOO-Na+group,thehydrophilicportionofthesoap,issolubleinwater.Sodiumstearateisanexampleofasoap.

sodiumstearate

Whenahydrophilicgroupandahydrophobic(lipophilic)groupareinthesamemolecule,themoleculeisdefinedasbeingamphiphilic.Whenthesaltofalongchainfattyacidisplacedinwater,acolloidaldispersioncalledmicelleisformed.Micellesareformedwhentheconcentrationofthecarboxylateexceedsacertainminimum(thecriticalmicelleconcentration).Micellesareaggregatesof50-100carboxylatemolecules(withdiametersofapproximately50angstroms).Thepolarpartofthemicelle,theCOO-Na+groups,isdirectedtotheoutsideofthemicelle.ThehydrocarbonportionisdirectedtowardtheinsideofthemicelleandisheldtogetherbyVanderWaalforces.Thesemicellesarespherical.Thearrangementcausesthecleansingactionofsoapswheredirtistrappedintheinteriorofthemicelle,andthedirtiswashedawayfromthewater.

18

http://www.chemgapedia.de/vsengine/media/vsc/en/ch/12/oc/c_acid/fatty_acid/micelle_gif.gifDetergentsareanalogoustosoaps,butthehydrophilicendisOSO3-Na+insteadofCOO-Na+

sodiumstearylsulfateStrengthofacidsElectronwithdrawinggroupssuchashalogens,methoxy,nitro,andcyanoincreasethestrengthofcarboxylicacids.

19

Acid Structure pKabutanoicacid CH3CH2CH2COOH

4.8

α-chlorobutanoicacid CH3CH2CH2CH(Cl)COOH 2.8β-chlorobutanoicacid CH3CH(Cl)CH2COOH

4.1

γ-chlorobutanoicacid ClCH2CH2CH2COOH

4.5

Acid Structure pKaAceticacid CH3COOH 4.7fluoroaceticacid FCH2COOH 2.6chloroaceticacid ClCH2COOH 2.9bromoaceticacid BrCH2COOH 2.9dichloroaceticacid Cl2CHCOOH 1.3trichloroaceticacid Cl3CCOOH 0.9Acid Structure pKaMethoxyaceticacid CH3OCH2COOH 3.6cyanoaceticacid NΞCCH2COOH 2.5nitroaceticacid NO2CH2COOH 1.7Electronreleasinggroupssuchasalkylgroupshaveatendencytodecreasethestrengthofacids. Acid Structure pKapropanoicacid CH3CH2COOH 4.92-methylpropanoicacid CH3CH(CH3)COOH 4.82,2-dimethylpropanoicacid CH3C(CH3)2COOH 4.1TheFieldEffectontheStrengthofanAcidThefieldeffectiscloselyrelatedtotheinductiveeffect.TheFieldEffectinvolvessolventsratherthanchemicalbonds.Theelectronegativityofthegroupattachedtothecarboxylicacidpolarizesthesurroundingsolventmoleculesandthispolarizationistransmittedthroughothersolventmoleculestothehydrogenatomattachedtothecarboxylicacidgroup.

20

TheFieldEffectaffectstheentropymorethantheenthalpy.Therelationshipbetweenenthalpyandentropyisgivenbyequation16.1.Equation16.1ΔGo=ΔHo-TΔSoInthefieldeffect,TΔSo>ΔHo,becauseΔHoisclosetozeroandinthesesystems.ΔSoisnegative;therefore-TΔSoispositiveThemorenegativetheΔSo,thelessspontaneousthesystem.Thelessorderedthesystem,themorenegativetheentropy.Themorenegativethevaluefortheentropy,themorepositivethevalueforTΔSo.ThemorepositivethevalueofTΔSo,themorepositivethevalueforΔGoandthelessspontaneousthedissociation.Consequently,themoreorderedthecarboxylicacidcausedbytheFieldEffect,thelessacidictheacidorthemoredisorderedthecarboxylicacidcausedbytheFieldEffect,themoreacidictheacid.IonizationofsubstitutedBenzoicacidsisaffectedbygroupsintheortho,para,andmetapositions.Theortho-position

ThefollowingtableliststhepKasofsomeortho-substitutedbenzoicacids.X pKaH 4.2CH3 3.9F 3.3Cl 2.9Br 2.8I 2.9CH3O 4.1NO2 2.2Themeta-positionThefollowingtableliststhepKasofsomemeta-substitutedbenzoicacids.

21

X pKaH 4.2CH3 4.3F 3.9Cl 3.8Br 3.8I 3.9CH3O 4.1NO2 3.5TheparapositionThefollowingtableliststhepKasofsomeortho-substitutedbenzoicacids.

DicarboxylicAcidsDicarboxylicacidshavetwodissociationconstants,Ka1andKa2.Forexample,malonicacid,anacidthathastwocarboxylicacidgroups,dissociatesintwosteps.Thefirstdissociationconstantisequalto1.48x10-3andtheseconddissociationconstantis2.04x10-6.

Ka1=1.48x10-3pKa1=2.83

22

Ka2=2.04x10-6pKa2=5.69ThepKa1ofdicarboxylicacidsissmallerthanthepKaofmonocarboxylicacidsduetostatisticalreasons,i.e.,therearetwocarboxylicacidgroupsfordicarboxylicacidscomparedtooneformonocarboxylicacids.PreparationofCarboxylicAcidsSynthesisofCarboxylicAcidsbytheOxidationofarenes:OxidationwithPotassiumPermanganate

orOxidationwithPotassiumDichromate

FollowingaremorecomprehensiveequationsthatrepresentaromaticsidechainoxidationusingKMnO4.Theoxidizingagenttransformsarenestoaromaticcarboxylicacids.

23

FollowingisabalancedmolecularequationfortheoxidationofarenesusingKMnO4.

FollowingaremorecomprehensiveequationsthatrepresentaromaticsidechainoxidationusingK2Cr2O7.Theoxidizingagenttransformsarenestoaromaticcarboxylicacids.

24

FollowingisabalancedmolecularequationfortheoxidationofarenesusingK2Cr2O7.

SynthesisofCarboxylicAcidsfromtheOxidationofPrimaryAlcohols

or

SynthesisofCarboxylicAcidsfromtheOxidationofaldehydes

or

25

SynthesisofaCarboxylicAcidfromGrignardreagents

FollowingisanexampleofthesynthesisofacarboxylicacidfromaGrignardreagent.

26

CarboxylicAcidscanbesynthesizedfromNitriles.Conversionofaprimaryalkylhalidetoacarboxylicacidwithanadditionalcarbonatomcanbeaccomplishedbyasubstitutionnucleophilicreactionbetweenaprimaryalkylhalideandsodiumcyanide.Acidhydrolysisoftheresultingnitrilewouldproducethedesiredcarboxylicacid.Forexamplecyclohexylaceticacidcanbesynthesizedinatwostepprocessbyanucleophilicsubstitutionreactionbetweenbromomethylcyclohexanewithsodiumcyanide.Acidificationoftheresultingnitrilewouldproducethedesiredcarboxylicacid.Step1

27

Step2

The acid hydrolysis of nitriles to produce carboxylic acids can be rationalized by the following six-step general mechanism and a specific mechanism involved in the synthesis of cyclohexylacetic acid from cyclohexylmethylcarbonitrile.(1)

(2)

28

(3)

(4)

(5)

29

(6)

ReactionsofCarboxylicAcidsCarboxylicacidswillreactwiththionylchloridetoformacylchlorides.

Carboxylicacidwillreactwithlithiumaluminumhydridetoproduceprimaryalcoholsbyatwo-stepprocess.Lithiumaluminumhydrideisdestroyedinwater;therefore,anaproticsolvent,e.g.tetrahydrofuran,isusedasasolventforthisreaction.Thefirststepistheformationoflithiumtetracyclopentylmethoxyaluminate

30

lithiumtetracyclopentylmethoxyaluminateThesecondstepinvolvesthehydrolysisofthelithiumtetraalkoxyaluminatecomlextoproducefourmolesofthedesiredalcohol.

CarboxylicacidsundergothereversibleFisherEsterificationreaction.

31

ThemechanismfortheFischerEsterificationreactionhasbeenresolvedusingkineticexperimentsandlabelingexperimentswith18Omethanol.WhenCH318OHreactswithacarboxylicacid,amethylesterisformed,andtheresultingmethylesterisrichin18O.Thefollowingsevenelementarystepsexplaintheformationofthemethylesterthatisrichin18O.(1) CH3

18 OH + H3O+! CH3

18 O+H2 + H2O (2)

(3)

(4)

(5)

(6)

32

(7)

IntramolecularEsterificationfollowsasimilarmechanism.Suggestamechanismforthefollowingreaction.

δ-valerolactone (IUPACNomenclature:5-pentanolide)Intramolecularesterificationformslactones,andlactonesarenamedbyreplacingthe-oicacidendingoftheparentcarboxylicacidby–olideandwiththenumberonthecarbonthatattackedthecarbonylcarbon.Forexample,thefollowingmoleculecanundergointramolecularesterificationtoproducetheδ-lactone5-pentanolide.

5-pentanolideReductionofγandδketoacidswillleadtoγandδlactonesasthemajorproducts.Thereactiontakesplaceinatwo-stepprocess.(1)

33

(2)

5-pentanolide (aδlactone)TheHell-Volhard-ZelinskyReactionTheHell-Volhard-Zelinskyreactionisusedtoprepare

OtherreagentsusedtoaccomplishthisreactionareBr2andphosphorus.Ammoniawilldisplacethebromineofthealphacarbonatomtoproducealphaaminoacids.

β-halocarboxylic acids

34

Followingaretheseriesofelementarystepsthatexplaintheformationofthealphabromocarboxylicacid,theproductoftheHell-Volhard-ZelinskyReaction.(1)

(2)

35

(3)

(4)

(5)

(6)

36

(7)

(8)

(9)

37

(10)

(11)

38

(12)

Anα-bromocarboxylicacid Thesumofthetwelveelementarystepsrationalizestheformationoftheα-bromocarboxylicacid,andexplainsthestoichiometryofthemolecularequation.

Analternatepathwaytothesynthesisofanα-bromocarboxylicacidistotreatthecarboxylicacidwiththionylchloride,followedbytreatmentwithN-bromosuccinimide,andfinallyfollowedbyhydrolysis.

39

DecarboxylationofDicarboxylicAcidsThemolecularstructureofmalonicacidcanundergodecarboxylationtoformcarbondioxideandtheenolformofaceticacid.Thisreactioncanbeaccomplishedbyheatingmalonicacidtoitsmeltingpoint(150oC).

Thefollowingtwostepsrepresentapathwayforthedecarboxylationofmalonicacidtoaceticacid.(1)LossofCarbonDioxide

40

(2)Tautometrism

Suggestasynthesisforthefollowingmoleculefromtheindicatedstartingmaterial.

heptanedioicacidcyclopenteneAnswerThesynthesiscanbeaccomplishedinsevensteps.Step1istheoxidativecleavageofcyclopentenetoformadicarboxylicacid,adipicacid.Thiscanbeaccomplishedwithpotassiumpermanganate.

Steps2and3involvethereductionofadipicacidtoformthelithiumaluminumalkoxidecomplexandthehydrolysisoftheresultinglithiumaluminumalkoxidetoform1,5-pentandiol.

41

Step3isthehydrolysisofthelithiumaluminumalkoxide.

Step4istheformationofthe1,5-dihalopentanecompoindfrom1,5-pentandiol.

Step5ispreparationoftheGrignardreagentfrom1,5-dichloropentane.

Step6istheformationofsaltofthecarboxylicacidwithcarbondioxide.

42

Thefinalstepisacidificationofthedicarboxylatetoformheptanedioicacid(pimelicacid).

heptanedioicacid(pimelicacid)

43

Problems

CarboxylicAcids

1. Arrangethefollowingacidinorderofincreasingacidity:propanoicacid;2-fluoropropanoicacid,3-fluoropropanoicacid,2,2-difluoropropanoicacid,3,3-difluoropropanoicacid

2. Whichcompound,propanoicacidor2-phenylpropanoicacid,wouldhavethehigherpKavalue?Givearationaleforyourselection.

3. Suggestasynthesisforbenzoicacidfrombenzeneastheonlysourceoforganicstartingmaterialandanyothernecessaryinorganicmaterials.

4. Suggestasynthesisfor4-phenylbutanoicacidfrombenzeneandanyothernecessaryorganicandinorganicmaterials.

5. Whichofthefollowingcompoundswouldhavethehighestboilingpoint?Givearationaleforyouranswer.

(a) CH3(CH2)4CH3

(b) CH3(CH2)3CH2OH

(c) CH3(CH2)2COOH

(d) CH3(CH2)2CH2SH

6. Ifastudenthad100.0mLofa0.050Msolutionofaceticacidand100.0mLofa0.100Msolutionofsodiumacetate,whatvolumeoftheweakacidsolutionwouldshehavetomixwiththeconjugatebasesolutioninordertoprepare75.0mLofabuffersolutionwithapHof5.0?ThepKaforaceticacidis4.7.

7. BenzaldehydereactedwithchromicacidtoformacompoundthatreactedwithpropylalcoholinaDean-Starkapparatustoformacompoundthathasantimicrobialproperties.Thecompoundalsohasanuttyodorandanut-liketaste.Suggestastructuralformulaforthissweetandfruitytastingcompound.

44

8. ListthefollowingacidsinorderincreasingpKavalues.

(a)

(b)

(c)

(d)

9. Suggestasynthesisforthefollowingfromthegivencompoundandanyothernecessaryinorganicandorganicmaterials.

45

10. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanynecessaryinorganicreagents.

11. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanyothernecessaryinorganicororganicmaterials.

12. Suggestasynthesisforthefollowingfromtheindicatedstartingmaterialandanyothernecessaryinorganicororganicmaterials.

13.2,5-Diethyl-1,1-cyclopentanedicarboxylicacidwasisolatedas opticallyinactivecompoundA(aracemicmixture)andoptically inactivecompoundB.AandBhavedifferentmeltingpoints.

CompoundAyieldstwo2,5-diethylcyclopentanecarboxylicacidswhenitisheated.CompoundByieldsone2,5-diethylcyclopentanecarboxylicacidswhenitisheated.(a) SuggeststructuresforAandB(b) Suggeststructure(s)fortheproduct(s)formedfromheating compoundA.(c) Suggeststructure(s)fortheproduct(s)formedfromheating compoundB.(d) Writemechanismstoaccountfortheseobservations.