BoardWork Indicate which pole of the magnet is north and which is south. (The blue lines represent...

Post on 23-Dec-2015

220 views 0 download

Tags:

Transcript of BoardWork Indicate which pole of the magnet is north and which is south. (The blue lines represent...

BoardWork

Indicate which pole of the magnet is north and which is south. (The blue lines represent magnetic field lines.)

Magnets and Currents

interacting and inseparable

Objectives

• Describe the magnetic field caused by an electrical current.

• Determine the force on an electric charge in a magnetic field.

What’s the Point?

• What is the force that underlies electric motors?

Current Creates Magnetism

An electric current creates a magnetic field.

Look, Ma! No poles!

Vector Direction Conventions

Up Down

In Out

RightLeft

Poll Question

If a wire in front of you carries a current from left to right, what is the direction of the resulting magnetic field where you are?

I

A. B. C.

D. E. F.

Board Work

An electric current creates a magnetic field whose lines circle right-handed around it. Draw lines for the magnetic field created by a ring of current.

I

Magnetic Field of Current Ring

Source: Griffith, The Physics of Everyday Phenomena

N

S

dipole field

Solenoid Magnetic Field

Source: Griffith, The Physics of Everyday Phenomena

N S

Electrons are Magnets!

spin

Electrons are Magnets!

current

Electrons are Magnets!

magnetic field

Electrons are Magnets!

N

S

magnetic dipole

Types of Magnets

• Electromagnets– currents travel through conducting coils

• Permanent Magnets– materials whose electrons have aligned spins

or orbits

Moving charges create the fields!

The Lorentz Force

making electrons work for us

Magnetic Force on a Charge

• Currents create magnetic fields.

• Currents are made of moving charges.

• Moving charges are magnets.

• Magnets apply forces to each other.

• Magnets apply forces to moving charges.

How do those forces behave?

Lorentz Force

Right-Hand Rule

F = qv B

Source: Griffith, The Physics of Everyday Phenomena

qv

Poll Question

What is the direction of the cross product A  B?

A

B

A.

B.

C.

D.

E.

F.

Cross Product Review

A

B

a

b

AB = area of parallelogram

Cross Product Review

• Curl right-hand fingers in direction of

• Right-hand thumb points in direction of cross-product

• Not commutative

A

B

a

b

AB = –(BA)

Lorentz Force Properties

• F = 0 unless charge is moving

• F = 0 if velocity is to field

• F = maximum if velocity is to field

• F 0 only if charge crosses B field lines

• If q, v or B reverse, direction of F reverses

paper square

Make an Origami Right Hand

fold over

magnetic

fieldcurrent

qv

For

ce

Lore

ntz

vectors

creases:in out

Think Question

What is the direction of the force on the object moving with velocity v through magnetic field B?

B

v

+

A.

B.

C.

D.

E.

F.

B

Group Poll Question

What is the magnitude of the force on object A compared to the magnitude of the force on object B?

v

q

v

2qA BA. FB = 4 FA

B. FB = 2 FA

C. FB = FA

D. FB = FA/2

E. FB = FA/4

B

Group Poll Question

How does the work done on object A compare to the work done on object B?

v

q

v

2qA B

A. wB > wA.

B. wB = wA.

C. wB < wA.

Lorentz and Newton’s third law

• F = qv B does not explicitly include a reaction force.

• Magnetic fields (B) are always created by moving charges.

• Moving charges (qv) always create magnetic fields.

• The moving charge creating B “feels” the field of qv. So F = qv B goes both ways.

Here’s where it is:

Board Work

From F = qv × B, find the SI unit of magnetic field B.

Challenge Question

A current runs through one wire of a pair of parallel wires. What is the direction of the resulting magnetic field at the location of the other wire?

I

??

Force between parallel currents

What is the force on this current?I  B

Definition of Ampere

• If two parallel wires are held 1 m apart,

• with currents of 1 A through each wire,

• the attractive force between the wires is 2  10–7 N for each meter of length of the wires.

Reading for Next Time

• Faraday’s law

• Big Ideas– A changing magnetic field can create an

electric potential– AC Transformers can be understood using

Faraday’s law and conservation of energy

• Very abstract– You are ready– It is very cool