循環器疾患における血中BNP,NT-proBNP測定 の意義. 2 No. 3 2008 J Cardiol Jpn Ed 163...

Post on 19-May-2018

229 views 2 download

Transcript of 循環器疾患における血中BNP,NT-proBNP測定 の意義. 2 No. 3 2008 J Cardiol Jpn Ed 163...

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 163

はじめに

 バイオマーカーは専門的技術がなくても客観的に疾患の評価が可能な検査法のひとつであるが,循環器領域におけるバイオマーカーの検討は比較的新しい.昨年,急性冠症候群と心不全領域におけるバイオマーカー測定についてのガイドラインが,National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelineとして初めて発表された1,2).「心不全に関する生化学指標のガイドライン」では,数あるバイオマーカーの候補の中から(表1),心負荷の指標としての血中B-type natriuretic peptide(BNP),N terminal(NT)-proBNP測定の有用性と,心筋障害の指標としての血中心筋トロポニン測定の可能性が論じられ,Class分類とエビデンスレベル分類が試みられた(表2).

BNP,NT-proBNPが,他の心不全のバイオマーカーと比較して圧倒的に論文数の多いバイオマーカーである理由としては,1)心不全の診断に有用,2)心不全の予後予測指標として有用であること以外に,3)臓器,疾患特異的な指標であること,4)心不全の治療指標としての可能性が高いことなどがあげられる2,3).さらに救急疾患の多い循環器領域では迅速測定系が開発されたことによる影響も大きい.NT-proBNPは,わが国では昨年7月より測定可能となったばかりであるが,欧米ではInternational NT-proBNP Concen-sus Panelとして,その臨床意義にコンセンサスが得られつつある4).本稿ではこれら最新のガイドライン,コンセンサスパネルを基本としてBNP,NT-proBNPについて現在までの知見を述べる.

1.BNP,NT-proBNPの基礎知識 BNPは1988 年にブタの脳から分離され5),その後直ちに主として心臓から分泌されることが判明した 6).BNPは通

総 説

循環器疾患における血中BNP,NT-proBNP測定の意義B-type natriuretic peptide (BNP) and N terminal -proBNP in cardiovascular disease

佐藤 幸人* 藤原 久義 鷹津 良樹Yukihito SATO, MD, FJCC*, Hisayoshi FUJIWARA, MD, FJCC, Yoshiki TAKATSU

兵庫県立尼崎病院循環器内科

* 兵庫県立尼崎病院循環器内科660-0828 尼崎市東大物町 1-1-1E-mail: cardioys@kuhp.kyoto-u.ac.jp2008年5月20日受付,2008年7月4日改訂,2008年7月8日受理

要 約

J Cardiol Jpn Ed 2008; 2: 163 – 177<Keywords> ナトリウム利尿ペプチド トロポニン 心不全 高血圧 狭心症

 「心不全に関する生化学指標のガイドライン」が,National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelineとして2007年に発表された.ガイドライン中では数ある心不全のバイオマーカーの候補の中から,心負荷の指標としての血中B-type natriuretic peptide(BNP),N terminal(NT)-proBNP測定の有用性と,心筋障害の指標としての血中心筋トロポニン測定の可能性が論じられ,Class分類とエビデンスレベル分類が試みられた.BNP,NT-proBNPが,他の心不全のバイオマーカーと比較して圧倒的に論文数の多いバイオマーカーである理由としては,1)心不全の診断に有用,2)心不全の予後予測指標として有用であること以外に,3)臓器,疾患特異的な指標であること,4)心不全の治療指標としての可能性が高いことなどが挙げられる.さらに救急疾患の多い循環器領域では迅速測定系が開発されたことによる影響も大きい.NT-proBNPは,わが国では2007年7月より測定可能となったばかりであるが,欧米では International NT-proBNP Concensus Panelとして,国際化統一を得ようとする動きもある.本稿ではこれら最新のガイドライン,コンセンサスパネルを基本としてBNP,NT-proBNPについて基礎知識,心不全患者での意義,冠動脈疾患患者での意義,一般住民での意義,さらには診察時検査(point of care test)について概説する.

J Cardiol Jpn Ed Vol. 2 No. 3 2008 164

常の状態では70%が心室由来で残りは心房由来とされ7),心房では顆粒として貯蔵されているが 8),心室に圧負荷がかかるとpre-proBNP1-134の合成が直ちに開始される.pre-proBNP1-134は,切断されてproBNP1-108となった後に,血中に流出する際BNP1-32とNT-proBNP1-76とに分かれるが,血中にはproBNP1-108自体も存在する.さらにBNP1-32 は,B- NP3-32と一部はBNP7-32 になる7)(図1).生物学的活性はNT-proBNP1-76には認めないが,BNP1-32とBNP3-32には認める.BNP測定値,NT-proBNP測定値は以上の分子のいくつかの総和を計測していると考えられており,BNP測定系はBNP1-32,BNP3-32,proBNP1-108を測定し,NT-proBNP測定系は,NT-proBNP1-76とproBNP1-108を測定しているとされている7).しかし重症心不全患者の血中ではBNP1-32は検出されないという報告もあり9),それぞれの患者の状態でこ

れらの分子がどのような形で存在するのか詳しいことは不明である10). BNPは血管拡張作用,ナトリウム利尿作用を持つペプチドであるが交感神経系,レニンアンジオテンシン系に拮抗する作用を有し,繊維化抑制作用もあわせ持つ11).ナトリウム利尿ペプチド系には細胞内情報伝達に関わる2つの受容体(natriuretic peptide receptor(NPR)-A,NPR-B)とひとつのクリアランス受容体(C受容体)がある11-13)(図2).これらの受容体は主として血管平滑筋,心筋,腎尿細管上皮細胞に存在し,BNPの作用はNPR-A受容体を介して細胞内cGMPを上昇させることにより発揮される.またBNPの血中からのクリアランスは,C受容体を介して行われるほか,腎近位尿細管,血管内皮にも認められる中性エンドペプチダーゼで分解を受ける. 体内での生物学的半減期はBNP約20分,NT-proBNP約120分であるが,採血後室温保存にてBNPはEDTA添加試験管内で数時間ほどは90%安定しており,NT-proBNPは72時間安定である14).またBNP測定の絶対値に関する注意点として,測定系により使用している抗体が認識するエピトープが異なるため15),BiositeやAbbottの数値よりShio-nogiは50%ほど低い数値が出る.このため,欧米の試験の絶対値の解釈には注意を要する.BNP,NT-proBNP値の修飾因子

 BNP,NT-proBNPは基本的には心筋への壁応力を反映するが,様 な々因子により修飾を受ける.肥満はBNP,NT-proBNP値を低下させ 16,17)(ただし日本人でBMI30以上の肥満はまれ18)),心房細動19),加齢 20),女性 20),腎機能悪化 21,22)は値を上昇させる.なかでも腎機能が与える影響については従来,NT-proBNPは腎クリアランスなので腎機能の影響を受けるが,BNPのクリアランスはC受容体と中性エンドペプチダーゼの分解によるので腎機能の影響は弱いとされてきた.しかし,BNP値を説明する因子として,心機能と腎機能を同時に解析した検討では,BNP値は心臓への負荷と同様,腎機能の影響も受けており,NT-pro-BNPよりは腎機能の影響は少ないものの,腎機能低下症例では少なからず腎機能に影響を受けることが判明した(図 3)21,23,24).以上の修飾因子はそれぞれの疾患の診断,予後推定においてカットオフ値に影響することが予想されるが,すべての病態のカットオフ値について年齢,性別,腎機能,心房細動の有無など別に値を設定することは現実的で

表1 慢性心不全のリスク評価に検討されたバイオマーカー(文 献 2 より改変).

一般検査Na,BUN,クレアチニン,ヘモグロビン,白血球数, アルブミン,ビリルビン,尿酸

神経体液因子カテコラミン(ノルエピネフリン,エピネフリン)レニン,ACE 活性,アンギオテンシン II,アルドステロンナトリウム利尿ペプチド(ANP,BNP,CNP, N-terminal proANP,N-terminal proBNP)エンドテリン –1バソプレッシンカルジオトロフィン –1アドレノメデュリン,ウロテンシン –II

炎症性マーカー高感度 CRP可溶性 ST2 レセプターTNF– α,TNF– αレセプターIL–6

代謝マーカーレプチンアディポネクチングレリンアペリンIGF–1

心筋細胞構成蛋白心筋トロポニン I,心筋トロポニン T

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 165

循環器疾患における血中BNP,NT-proBNP測定の意義

心不全の初期評価

A.心不全診断

Class I1. BNP,NT-proBNP を,急性心不全を疑う症状の患者に対し,診断,除外診断のために測定する(エビデンスレベル A)Calss IIa1. BNP,NT-proBNP を,慢性心不全を疑う症状の患者に対し,除外診断のために測定する(エビデンスレベル C)Class III1. 明らかに心不全の診断で間違いない患者に BNP,NT-proBNP を測定する(エビデンスレベル C)2. 心不全の診断において BNP,NT-proBNP 測定は,臨床症状や他の心エコー,血行動態検査にとってかわるものではない(エ

ビデンスレベル C)

B.リスク評価

Class IIa1. BNP,NT-proBNP 測定は従来よりも詳細なリスク評価が求められるときに有用である(エビデンスレベル A)2. BNP,NT-proBNP を経過を追って採血し,その変化によりさらなるリスク評価する(エビデンスレベル B)Class IIb1. 心筋トロポニン測定を心不全患者のリスク評価に用いる(エビデンスレベル B)Class III1. バイオマーカーを心不全患者のリスク評価のためだけに測定する(エビデンスレベル B)

心不全の治療指標

Class III

1. BNP,NT-proBNP は intra,inter variation が大きい指標であるため,治療効果判定に使用するにはデータが不十分である(エビデンスレベル B)

表2 心不全におけるバイオマーカー測定のガイドライン(文献 2 より改変).

were similar to recombinant proBNP1-108.59 These resultswere subsequently further confirmed in population testing,which demonstrated that a great percentage of circulating “NT-proBNP” or “BNP” is, in fact, proBNP1-10860 (Figure 1).At present, it is hard to know exactly what forms of NP

are present in circulation and whether the heterogeneity offorms is associated with variability in biologic effect. Thisuncertainty particularly focuses on BNP because it repre-sents the biologically active portion of the molecule.Once in circulation, studies suggest that the BNP mol-

ecule is rapidly truncated to yield a number of fragmentsthat dominate in proportion relative to mature BNP1-32.Indeed, Hawkridge et al61 suggested a complete absenceof BNP1-32 in patients with HF. Among the more impor-tant fragments of BNP that circulate is BNP3-32, whichresults from the cleavage of BNP1-32 by dipeptidyl pep-tidase–IV. Cleavage by dipeptidyl peptidase–IV does notchange the resistance of human BNP to further degrada-tion by human neutral endopeptidase.62 Moreover, a re-

cent study has demonstrated that the peptidase meprin A,which is highly expressed in the kidney, also processesBNP1-32 to BNP7-32.63

There is mounting evidence that these different molecu-lar forms of BNP have differential biologic activity in HF.A recent study sought to evaluate the ability of proBNP1-108,NT-proBNP1-76, and BNP3-32 to activate cyclic guanosinemonophosphate (cGMP) in cultured cardiac fibroblasts andcardiomyocytes compared with the biologically active ma-ture BNP1-32. Predictably, NT-proBNP1-76 had no biologicactivity, and proBNP1-108 had significantly reduced cGMPactivity in vitro: it was 6- to 8-fold less potent than BNP.64

Whereas in vitro BNP3-32 was similar to BNP1-32 in acti-vating cGMP in fibroblasts and cardiomyocytes, studieshave demonstrated that in vivo BNP3-32 has significantlyreduced renal actions, probably because of the rapid degra-dation of BNP3-32.65

Because the amino-terminal region of NT-proBNP1-108contains sequences permitting oligomerization, a trimer of

Figure 1. A paradigm for natriuretic peptide synthesis and release. BNP � B-type natriuretic peptide; DPP-IV � dipeptidyl peptidase–IV; NT-proBNP �amino-terminal pro–B-type natriuretic peptide.

Table 1Important regulators of the B-type natriuretic peptide (BNP) gene*

Stimulus Potential Effectors cis Elements

�-Adrenergic agonist cAMP, Src, Rac, GSK3�, CaMKII, PI3K GATA (�85), MCAT (�97 and �124)Interleukin-1� Ras, Rac, p38 MAPK, PKC MCAT (�97)Endothelin-1 Rac, Src GATA; region between �1818 and �408; TRE at �1000Stress Activators of MKK6 and p38 MAPK AP-1–like site at �111Ischemic injury Unknown Region between �408 and �100Phenylephrine Calcineurin NF-AT at �927Thyroid hormone (T3) Thyroid receptor TRE at �1000Mechanical stretch p38 MAPK SSREs (�652 to �633 and �162)

AP-1� activating protein–1; cAMP� cyclic adenosine monophosphate; CaMKII� calcium/calmodulin-dependent protein kinase-II; GSK3� � glycogensynthase kinase–3�; MAPK � mitogen activated protein kinase; MCAT � muscle-CAT binding site; MKK6 � mitogen-activated protein kinase kinase 6;NF-AT� nuclear factor of activated T cells; PI3K � phosphatidylinositol 3-kinase; PKC� protein kinase C; SSREs � shear stress response elements; TRE� TPA-response element.* The wide variety of factors with significant effects on BNP gene activity is reflected clinically in the broad array of disease states known to affect

concentrations of BNP and N-terminal pro-BNP in patients.

5AMartinez-Rumayor et al/ Biology of the Natriuretic Peptides

図1 Pre-proBNP1-134 から,BNP1-32,NT-proBNP1-76 までのプロセッシング 7).

J Cardiol Jpn Ed Vol. 2 No. 3 2008 166

はない.特に緊急を要する急性心不全の診断におけるカットオフ値について,NT-proBNP値では腎機能を考慮せず,年齢のみ考慮した値が提唱されている25).

2.急性心不全を対象とした測定(診断,リスク評価)1)急性心不全の診断 BNP,NT-proBNPの研究の中で最も確立した領域は救

急現場における急性心不全の診断についてであり,Nation-al Academy of Clinical Biochemistry Laboratory Medi-cine Practice GuidelineでもClass I,エビデンスレベルAの扱いとなっている2).救急室における急性心不全の早期診断,リスク評価は,緊急を要する疾患であるという意味で大変重要であり,実際にBNP,NT-proBNPを救急の現場で臨床応用するためには迅速測定系の開発が必須であ

analyses were performed with SAS 8.2 (SAS Institute,Inc.).

Resultsbaseline concentrations of nt-probnp and bnpand association with clinical variablesThe median (25th-75th percentiles) concentration of NT-proBNP at baseline was 895 (375–1985) ng/L (n � 3916).Corresponding values for BNP were 99 ng/L (41–242).Pearson coefficient of correlation between baseline con-centrations of NT-proBNP and BNP was 0.77 (P �0.0001).Plasma concentrations of NT-proBNP and BNP accord-

ing to baseline clinical characteristics are presented inTable 1. NT-proBNP and BNP were significantly higher inolder patients, and in patients with more symptomaticHF, more dilated LV and more severe LV dysfunction,lower body mass index (BMI), lower sitting arterial bloodpressure, HF of ischemic etiology, or atrial fibrillation atstudy entry. The concentration of both peptides was alsohigher in patients with increased laboratory markers(creatinine and bilirubin) and neurohormones (plasmarenin activity, norepinephrine, and C-reactive protein).There were no relevant differences between the univariateclinical correlates of NT-proBNP or BNP, except forbeta-blocker use, sitting heart rate, and plasma aldoste-rone concentration (all nonsignificant for BNP).Baseline log-transformed NT-proBNP or BNP concen-

trations correlated with age, LVEF, and LVIDd, with r2

ranging from 0.02 to 0.12 (P �0.0001, variables as contin-uous data). Fig. 1 compares the relationship betweenmedian NT-proBNP or BNP and these variables, catego-rized by quartiles. The trend was similar for both natri-uretic peptides.The strongest continuous relationship was found be-

tween log-transformed estimated glomerular filtrationrate (eGFR) and NT-proBNP (Pearson CV �0.34, P�0.0001) or BNP (�0.21, P �0.0001). The relationshipbetween median concentrations of NT-proBNP or BNPand eGFR showed a steeper increase of NT-proBNPcompared with BNP in patients with reduced renal func-tion (Fig. 2). However, the number of patients with eGFR�30 mL/min/m2 was limited in this study (n � 59, 1.5%of the population).The clinical variables that were independently associ-

ated with baseline concentrations of BNP or NT-proBNP(expressed as log-transformed data) were largely com-mon to both peptides, with the exception of the use ofangiotensin-converting enzyme (ACE) inhibitors andbeta-blockers (Table 2). Whereas NT-proBNP was inde-pendently associated with ACE inhibitors (positive rela-tion) and beta-blockers (negative relation), no such asso-ciations were found with BNP. The factors with thestrongest association were age, ischemic etiology, pres-ence of atrial fibrillation, LV ejection fraction, and internaldiameter.

Fig. 1. Median concentrations of baseline NT-proBNP and BNP byquartiles of age, LVEF, and LVIDd.Differences of median concentrations among quartiles were evaluated by theKruskal–Wallis test and were significant for age, LVEF, and LVIDd for bothpeptides (all with P �0.00001). Vertical scale is different for NT-proBNP (blackbars) and BNP (white bars). The number of patients in each category is shownabove bars.

Clinical Chemistry 52, No. 8, 2006 1531

prognostic value of bnp and nt-probnpThe adjusted hazard ratios for death, M&M, or hospital-ization for HF according to baseline deciles of NT-proBNPand BNP are presented in Fig. 3. There was a similarprogression in the probability of death with increasingplasma concentration of NT-proBNP or BNP, with hazardratios in the tenth decile of 4.02 (2.63–6.11) and 4.02(2.70–5.99), respectively. Corresponding values for M&Mwere 4.74 (3.36–6.70) and 3.67 (2.70–4.98). An apparentsuperiority of NT-proBNP over BNP for predicting therisk of hospitalization for patients with HF was observedacross the whole range of concentrations. For instance, therelative risk of hospitalization for HF was higher in thetenth decile of NT-proBNP [7.51 (4.30–13.11)] comparedwith that of BNP [3.86 (2.56–5.84)], although 95% confi-dence intervals (CIs) always overlapped.

The independent prognostic values of baseline BNP orNT-proBNP were tested separately in Cox multivariablemodels that included the demographic, clinical, and echo-cardiographic variables with a statistically significantassociation with outcome at univariate analysis (P �0.05).First, the natriuretic peptides and the other covariateswere entered as categorical variables, dichotomized aboveor below the median value. In these models, NT-proBNPwas the first predictor of outcome with hazard ratios (95%CI) of 2.07 (1.76–2.46) for mortality, 2.20 (1.92–2.51) forM&M, and of 2.66 (2.19–3.22) for hospitalization for HF(Fig. 4). Similarly, BNP resulted as the strongest indepen-dent predictor of mortality [1.87 (1.59–2.20)], M&M [2.05(180–2.34)], and hospitalization for HF [2.48 (2.06–2.98)].When the natriuretic peptides and appropriate covariateswere considered as continuous variables, their prognosticvalue was consistent with the analysis based on mediancutoff values. For instance, an increment of 500 ng/L ofbaseline NT-proBNP concentration corresponded to anincrease of risk of 3.8% for mortality (P �0.0001), whereasan increment of 50 ng/L of baseline BNP concentrationcorresponded to an increase of risk of 5.7% (P �0.0001).Similarly, increases of risk for M&M were 3.5% and 5.4%,and 3.0% and 5.7% for hospitalization for HF, respectively(P �0.0001 for all). Finally, the likelihood-ratio testshowed that BNP or NT-proBNP provided significantincremental prognostic value for the prediction of all-cause mortality, M&M, and hospitalization for HF (allwith P �0.0001) compared with a model based on demo-graphic, echocardiographic, and clinical variables.The predictive values of NT-proBNP and BNP were

compared by means of ROC curves (Table 3). The AUC(SE) for NT-proBNP (0.679 [0.011]) was marginally higherthan for BNP (0.665 [0.001]; P � 0.0734) for predictingall-cause mortality. For M&M, NT-proBNP (AUC � 0.688[0.009]) had a statistically significant higher predictivevalue than BNP [0.674 (0.009); P � 0.0332]. The same was

Fig. 2. Median plasma concentrations of NT-proBNP and BNP accordingto eGFR.eGFR categories are based on the National Kidney Foundation classification ofrenal function. Vertical scale is different for NT-proBNP (black bars) and BNP(white bars). The number of patients in each category is shown above bars.

Table 2. Multivariable linear regression for the association with baseline loge NT-proBNP, or loge BNP.Clinical variables loge NT-proBNP loge BNP

� regression coefficients (SE) P value � regression coefficients (SE) P value

Age (�1 year) 0.0254 (0.0016) �0.0001 0.0183 (0.0020) �0.0001BMI (�1 kg/m2) �0.0637 (0.0036) �0.0001 �0.0585 (0.0046) �0.0001NYHA (III–IV) 0.2477 (0.0332) �0.0001 0.2086 (0.0420) �0.0001LVEF (�1%) �0.0300 (0.0024) �0.0001 �0.0235 (0.0030) �0.0001LVIDD (�1 cm) 0.2052 (0.0185) �0.0001 0.2416 (0.0023) �0.0001Ischemic etiology (yes) 0.2429 (0.0423) �0.0001Atrial fibrillation (yes) 0.5416 (0.0509) �0.0001 0.2575 (0.0634) �0.0001SBP (�1 mmHg) 0.0029 (0.0011) 0.0109Heart rate (�1 bpm) 0.0087 (0.0013) �0.0001Digoxin (yes) �0.1405 (0.0443) 0.0015Diuretics (yes) 0.2343 (0.0455) �0.0001 0.2636 (0.0575) �0.0001ACE inhibitors (yes) 0.1741 (0.0621) 0.0051Beta-blockers (yes) �0.1419 (0.0340) �0.0001Bilirubin (�1 loge �mol/L) 0.3601 (0.0330) �0.0001 0.4346 (0.0418) �0.0001Creatinine (�1 loge �mol/L) 0.8119 (0.0747) �0.0001 0.4811 (0.0946) �0.0001

1532 Masson et al.: B-Type Natriuretic Peptides in Heart Failure

図3 慢性心不全患者における Left Ventricular Ejection Fraction(LVEF),estimated glomerular filtration rate(eGFR)と B- NP,NT-proBNP 値 24).BNP,NT-proBNP 値ともに LVEF,eGFR の影響を受けている.

For personal use. Only reproduce with permission from The Lancet.

elderly or have comorbid disorders that mimic heart failure,such as pulmonary disease or obesity. In early pilot studies,raised concentrations of BNP distinguished heart failurefrom other causes of dyspnoea more accurately than didleft-ventricular ejection fraction, ANP, and N-terminalANP, with a sensitivity of greater than 90% and a specificityof 80–90%.42,43 These findings were supported by the resultsof a series of small studies47,48 from a single centre using acommercially available point-of-care BNP assay, and haverecently been validated in a multicentre study of 1586patients presenting to the emergency room with dyspnoea.49

In this study, concentrations of BNP were highest inpatients with decompensated heart failure, intermediate inthose with known left-ventricular dysfunction but no acuteheart failure exacerbation, and lowest in those without heartfailure or left-ventricular dysfunction (figure 2). Using athreshold of greater than 100 ng/L to diagnose heart failure,BNP did better than all other clinical variables49 and theclinical judgment of the emergency room physician,50 andcontributed explanatory power to a multivariable modelthat incorporated diagnostic variables from the patienthistory, examination, and chest radiograph.49 BNP wasespecially useful for ruling out heart failure; at a BNPthreshold of 50 ng/L, the negative predictive value was96%49 (table 2).

Asymptomatic left-ventricular systolic dysfunctionAsymptomatic left-ventricular dysfunction is at least ascommon as symptomatic heart failure. A simple screeningtest to identify this disorder might help to identify patientsat risk of developing heart failure who would benefit fromtreatments that prevent progression to heart failure,including angiotensin converting enzyme inhibitors and � blockers. Such screening could be targeted to patients athigh risk for left-ventricular dysfunction, such as those with

REVIEW

THE LANCET • Vol 362 • July 26, 2003 • www.thelancet.com 317

Natriuretic peptides relax vascular smooth muscle, causingarterial and venous dilation and leading to reduced bloodpressure and ventricular preload.30,31 ANP and BNP alsohave important central and peripheral sympathoinhibitoryeffects. Both hormones block cardiac sympathetic nervoussystem activity, even when cardiac filling pressures fall.32,33

These hormones also inhibit the renin-angiotensin-aldosterone axis: ANP infusion directly blocks secretion ofrenin and aldosterone and further inhibits the stimulatoryeffect of angiotensin II on release of aldosterone.30,34,35 BNPhas direct lusitropic (relaxing) properties in themyocardium,36 and might have antiproliferative andantifibrotic effects in vascular tissues.37,38 By contrast withANP and BNP, CNP does not function as a circulatinghormone,39 but acts locally in the vasculature as avasodilator and inhibitor of vascular cell proliferation,40 andin the central nervous system, where it has severalfunctions.41

Natriuretic peptides as cardiac biomarkersFor a biomarker to be valuable in clinical practice, it shouldbe able to be measured rapidly and accurately at areasonable cost; add diagnostic or prognostic informationto available methods; and help to guide patientmanagement. BNP and N-terminal BNP fulfil most ofthese criteria in patients with suspected heart failure. BNPpredicts disease state and prognosis better than ANP or N-terminal ANP.42–45 Although adequately powered head-to-head comparisons have not been done, N-terminal BNPseems to provide much the same information as BNP,46 andassays for N-terminal BNP are also now availablecommercially.

Diagnostic useHeart failureHeart failure can be difficult to diagnose accurately,because the signs and symptoms of this disorder are neithersensitive nor specific.47 These limitations are especiallyrelevant when symptoms are mild or when patients are

CNP

GTP cGMPANP/BNP

ANP>CNP>BNP

GTP cGMP

NPR–A

NPR–B

NPR–C

Guanylyl cyclase-A

Biologicaleffects

Clearancereceptor

Neutralendopeptidase

Figure 1: Natriuretic peptide hormone binding and clearanceGTP=guanosine triphosphate. GMP=guanosine monophosphate. Atrialnatriuretic peptide (ANP) and brain natriuretic peptide (BNP) bind tonatriuretic peptide receptor (NPR) A, a guanylyl cyclase receptor thatmediates the biological effects of these peptides. The peptide is clearedvia two mechanisms: binding to NPR-C and degradation by neutralendopeptidase.

Renal Vascular Cardiac SNS/RAAS

↑ GFR ↓ Arterial tone Lusitropic ↑ Vagal tone↓ Na+ resorbtion ↓ Venous tone Antifibrotic ↓ SNS activity

Antiproliferative Antiproliferative ↓ Renin release↓ Aldosteronerelease

GFR=glomerular filtration rate. SNS=sympathetic nervous system. RAAS=renin-angiotensin-aldosterone system

Table 1: Actions of natriuretic peptides

B-ty

pe n

atriu

retic

pep

tide

(ng/

L)

No congestiveheart failure

(n=770)

Dyspnoea due to non-cardiac causes in patients with a history

of left-ventricular dysfunction (n=72)

Dyspnoea dueto congestiveheart failure

(n=744)

0

200

400

600

800

1000

1200

1400

Figure 2: BNP concentrations in patients presenting withdyspnoea and enrolled in the BNP multinational studyData are median (IQR). Bars are highest and lowest values. Reproducedwith permission from Mosby Inc.49

Threshold Sensitivity Specificity PPV NPV Accuracy

50 ng/L 97% 62% 71 96 79%80 ng/L 93% 74% 77 92 83%100 ng/L 90% 76% 79 89 83%125 ng/L 87% 79% 80 87 83%150 ng/L 85% 83% 83 85 84%

Adapted from reference 49. PPV=positive predictive value. NPV=negativepredictive value

Table 2: Operating characteristics of BNP thresholds in themultinational study

図2 BNPの受容体とクリアランス 11).BNP のクリアランスはクリアランスレセプター NPR-C を介する経路と,中性エンドペプチダーゼによる分解とがある.BNP は natriuretic peptide receptor(NPR)A に結合し,生物学的効果を発揮する.GTP = guanosine triphosphate, GMP = guanosine monophosphate.

prognostic value of bnp and nt-probnpThe adjusted hazard ratios for death, M&M, or hospital-ization for HF according to baseline deciles of NT-proBNPand BNP are presented in Fig. 3. There was a similarprogression in the probability of death with increasingplasma concentration of NT-proBNP or BNP, with hazardratios in the tenth decile of 4.02 (2.63–6.11) and 4.02(2.70–5.99), respectively. Corresponding values for M&Mwere 4.74 (3.36–6.70) and 3.67 (2.70–4.98). An apparentsuperiority of NT-proBNP over BNP for predicting therisk of hospitalization for patients with HF was observedacross the whole range of concentrations. For instance, therelative risk of hospitalization for HF was higher in thetenth decile of NT-proBNP [7.51 (4.30–13.11)] comparedwith that of BNP [3.86 (2.56–5.84)], although 95% confi-dence intervals (CIs) always overlapped.

The independent prognostic values of baseline BNP orNT-proBNP were tested separately in Cox multivariablemodels that included the demographic, clinical, and echo-cardiographic variables with a statistically significantassociation with outcome at univariate analysis (P �0.05).First, the natriuretic peptides and the other covariateswere entered as categorical variables, dichotomized aboveor below the median value. In these models, NT-proBNPwas the first predictor of outcome with hazard ratios (95%CI) of 2.07 (1.76–2.46) for mortality, 2.20 (1.92–2.51) forM&M, and of 2.66 (2.19–3.22) for hospitalization for HF(Fig. 4). Similarly, BNP resulted as the strongest indepen-dent predictor of mortality [1.87 (1.59–2.20)], M&M [2.05(180–2.34)], and hospitalization for HF [2.48 (2.06–2.98)].When the natriuretic peptides and appropriate covariateswere considered as continuous variables, their prognosticvalue was consistent with the analysis based on mediancutoff values. For instance, an increment of 500 ng/L ofbaseline NT-proBNP concentration corresponded to anincrease of risk of 3.8% for mortality (P �0.0001), whereasan increment of 50 ng/L of baseline BNP concentrationcorresponded to an increase of risk of 5.7% (P �0.0001).Similarly, increases of risk for M&M were 3.5% and 5.4%,and 3.0% and 5.7% for hospitalization for HF, respectively(P �0.0001 for all). Finally, the likelihood-ratio testshowed that BNP or NT-proBNP provided significantincremental prognostic value for the prediction of all-cause mortality, M&M, and hospitalization for HF (allwith P �0.0001) compared with a model based on demo-graphic, echocardiographic, and clinical variables.The predictive values of NT-proBNP and BNP were

compared by means of ROC curves (Table 3). The AUC(SE) for NT-proBNP (0.679 [0.011]) was marginally higherthan for BNP (0.665 [0.001]; P � 0.0734) for predictingall-cause mortality. For M&M, NT-proBNP (AUC � 0.688[0.009]) had a statistically significant higher predictivevalue than BNP [0.674 (0.009); P � 0.0332]. The same was

Fig. 2. Median plasma concentrations of NT-proBNP and BNP accordingto eGFR.eGFR categories are based on the National Kidney Foundation classification ofrenal function. Vertical scale is different for NT-proBNP (black bars) and BNP(white bars). The number of patients in each category is shown above bars.

Table 2. Multivariable linear regression for the association with baseline loge NT-proBNP, or loge BNP.Clinical variables loge NT-proBNP loge BNP

� regression coefficients (SE) P value � regression coefficients (SE) P value

Age (�1 year) 0.0254 (0.0016) �0.0001 0.0183 (0.0020) �0.0001BMI (�1 kg/m2) �0.0637 (0.0036) �0.0001 �0.0585 (0.0046) �0.0001NYHA (III–IV) 0.2477 (0.0332) �0.0001 0.2086 (0.0420) �0.0001LVEF (�1%) �0.0300 (0.0024) �0.0001 �0.0235 (0.0030) �0.0001LVIDD (�1 cm) 0.2052 (0.0185) �0.0001 0.2416 (0.0023) �0.0001Ischemic etiology (yes) 0.2429 (0.0423) �0.0001Atrial fibrillation (yes) 0.5416 (0.0509) �0.0001 0.2575 (0.0634) �0.0001SBP (�1 mmHg) 0.0029 (0.0011) 0.0109Heart rate (�1 bpm) 0.0087 (0.0013) �0.0001Digoxin (yes) �0.1405 (0.0443) 0.0015Diuretics (yes) 0.2343 (0.0455) �0.0001 0.2636 (0.0575) �0.0001ACE inhibitors (yes) 0.1741 (0.0621) 0.0051Beta-blockers (yes) �0.1419 (0.0340) �0.0001Bilirubin (�1 loge �mol/L) 0.3601 (0.0330) �0.0001 0.4346 (0.0418) �0.0001Creatinine (�1 loge �mol/L) 0.8119 (0.0747) �0.0001 0.4811 (0.0946) �0.0001

1532 Masson et al.: B-Type Natriuretic Peptides in Heart Failure

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 167

循環器疾患における血中BNP,NT-proBNP測定の意義

る.Breathing Not Properly試験においてMaiselらは1,586例の急性の呼吸困難を主訴に救急受診した患者を対象に,臨床症状のみで診断するよりもTriage BNP(Biosite)を 組み合わせたほうがより正確に急性心不全の診断が可能なことを報告したが,BNPの急性心不全の診断におけるarea under the receiver-operating characteristic curve(AUC)は0.91とかなりよい数字であった26).NT-proBNP(エクルーシスproBNP,Roche Diagnostics)についても同様の検討がJanuzziらによって行われ,ProBNP Investigation of Dysp-nea in the ED(PRIDE)試験における599例の検討では,NT-proBNPの急性心不全の診断におけるAUCは0.94であり,臨床指標よりもより正確な急性心不全の診断が可能であった27).また,NT-proBNPの急性心不全の診断におけるrule out値として,PRIDE試験ではNT-proBNP値300 pg/ml以下では急性心不全のnegative predictive valueは99 %と報告された.NT-proBNPの急性心不全の診断におけるrule in値についてはさらにInternational Collaborative of

NT-proBNP(ICON)試験にて詳しく検討され,年齢によりカットオフ値を50才以下450 pg/ml,50-75歳900 pg/ml, 75歳以上1,800 pg/mlとすることにより,positive predic-tive valueを90%近くまで上げることが可能なことが示された 28).図 4に呼吸困難症状を呈する患者を対象にした,急性心不全の診断におけるNT-proBNP測定のアルゴリズムを示す 29).救急現場での急性心不全の診断におけるBNP,NT-proBNP値の 解 釈で 注 意を要する点として,Flash pulmonary edemaでは発症が1時間前後と急激なために値が充分上昇しないことがある30).2)“Gray zone”の解釈 “Gray zone”とは呼吸苦を主訴として救急室を受診した患者の,急性心不全診断におけるrule inカットオフ値とrule outカットオフ値の間のことを言い,NT-proBNP値では300-900 pg/ml(50-75歳)である31).この間の数値の患者は明らかな急性心不全の可能性は低いが,急性心不全の可能性を念頭において続いて検査を進めるべきであり,

NT-proBNP

NT-proBNP

Gray zone

NT-proBNP < 300 pg/ml rule out

NT-proBNP >rule in *

図4 急性の呼吸困難症状示す患者の診断アルゴリズム 29).< 50 歳:450 pg/ml,50-75 歳:900 pg/ml,> 75 歳:1,800 pg/ml.*急性心不全の年齢補正 rule in 値.

*

J Cardiol Jpn Ed Vol. 2 No. 3 2008 168

NT-proBNPの数値自体も予後予測指標という情報を持った重要な数値である29).3)急性心不全患者における予後予測能 ガイドラインでの扱いはClass IIa,エビデンスレベルAである2).BNP,NT-proBNPの予後予測能については,救急室におけるBNP値が90日後の予後予測因子であることがRapid Emergency Department Heart Failure Outpatient Trial(REDHOT)により報告された32).PRIDE試験からは心エコーのEFと比較してもNT-proBNP値が強い予後予測指標であることが示された33).欧米では急性心不全の代表的なレジストリーとして15万症例規模のAcute Decom-pensated Heart Failure National Registry(ADHERE)があるが,このデータベースでもBNP値は院内死亡の強い予後予測因子であった34).4)BNP,NT-proBNP測定が入院日数に及ぼす影響 B-type Natriuretic Peptide for Acute Shortness of breath EvaLuation(BASEL)試験においてMuellerらは呼吸困難にて救急室を受診した452例の患者を対象に,救急室で迅速にBNPを測定することにより心不全の的確な評価が可能になり,死亡率を増加させることなく入院日数と医療費を軽減できたと報告した35).NT-proBNPについても同様の検討が IMPROVE-CHF(Improved Management of Patients With Congestive Heart Failure)試験にて行われ,60日間の医療コストが有意に減少した36).しかし,これらの試験にも記載されているように,欧米の急性心不全の入院期間は1週間ほどと極端に短く,医療保険制度,社会背景により医療コストの結果はかなり左右されると思われる.

3.慢性心不全の診断,リスク評価における測定 慢性心不全の診断におけるBNP,NT-proBNP測定の有用性はClass IIa,エビデンスレベルCとなっており,慢性心不全の診断ではなく,除外に用いると表現されている2).慢性心不全の場合,急性心不全と比較すると,患者の基礎疾患や状態によってBNP,NT-proBNP値が大きく異なる.そのため診断においてコンセンサスの得られる単一のカットオフ値を決定することは困難であるが,International NT-proBNP Concensus Panelでは,慢性心不全症状を疑う外来患者を対象にした場合,125 pg/mlのカットオフ値でneg-ative predictive valueは約97%であると報告している37).

慢性心不全の予後予測におけるBNP,NT-proBNP測定の有用性については下記の薬剤多施設試験も含めて多くの報告があり38,39),ガイドラインでの扱いはClass IIa,エビデンスレベルAである2).慢性心不全,高血圧の薬剤多施設試験におけるBNP,NT-

proBNP

 近年の高血圧,慢性心不全の薬剤多施設試験ではサブ解析としてBNP,NT-proBNPを測定している試験が増えつつある.これらの研究の内容は,小規模研究で既に証明されていることの確認であることもあるが,新しい結果が出ることもある.代表的なものを下記に示す.a)慢性心不全の薬剤多施設試験 現在までバイオマーカーについて検討している最も多い症例数の慢性心不全薬剤多施設試験は,ARBバルサルタンを用いたVal-HeFT(Valsartan Heart Failure Trial)であ る.約4,000例の慢性心不全患者についてBNP(Shiono-gi),NT-proBNP(Roche)などのバイオマーカーが測定され,慢性心不全患者において観察開始時のBNP,NT-pro-BNPは強い予後予測指標であることが改めて確認された

(観察開始時BNP中央値99 pg/ml,NT-proBNP中央値895 pg/ml)24,40).重要なことは観察期間中のBNP値の変化率が慢性心不全のハードエンドポイントであるall cause mortality and morbidityと相関したことである38,40).このように臨床経過とバイオマーカーの変動が並行することは,理想的なバイオマーカーの必須条件であるが 3),証明は意外と困難でBNP以外のバイオマーカーでは証明されていない.Val-HeFT試験ではランダム化前,ランダム化後4,12カ月後に心エコーも行われており,経過中のBNPの低下が心エコーでのEF改善と相関することも報告された41).同様にBNP値の変化と心エコー所見の改善が相関することを報告した他の試験としては,カンデサルタンとエナラプリルを用いたRandomized Evaluation of Strategies for Left Ven-tricular Dysfunction(RESOLVD)がある42).さらに血中ノルエピネフリンや,血中レニン活性,血中アルドステロン値などは古典的生化学指標として,慢性心不全患者の予後予測指標であることが報告されていたが,Val-HeFT試験ではこれら古典的生化学指標と比較してもBNP値が圧倒的に強い予後予測指標であることが確認された43). Carvedilol Prospective Randomized Cumulative Sur-vival(COPERNICUS)は,慢性心不全患者におけるNT-

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 169

循環器疾患における血中BNP,NT-proBNP測定の意義

proBNPの予後予測能が,多人数 (1,011例)で確認された最初の大規模試験である(NT-proBNP値は平均3,235 pg/ ml,中央値1,767 pg/ml).多変量解析の結果,NT-pro-BNP高値,カルベジロール投薬の有無,低血圧,心不全入院の既往は独立した予後予測因子であり,なかでもNT-proBNPの予後予測能は強力であった44).さらに観察期間3,6カ月後においてカルベジロールが NT-proBNPの経時的な数値を抑制することが確認された45).本試験の結果により,従来β遮断薬投与後数週間はBNP,NT-proBNPの上昇がみられることが報告されていたが,長期的な予後改善に伴って数カ月後にはこれらの指標も低下すると解釈され

た.Carvedilol Or Metoprolol European Trial(COMET)試験では1,559例の患者でNT-proBNPが測定されたが(中央値1,242 pg/ml),β遮断薬投与後の観察期においてNT-proBNP値が持続高値である患者の予後は悪く,NT-pro-BNP値が低下した患者の予後はよいことが報告され,CO-PERNICUSで得られた知見が再確認された46).b)高血圧の薬剤多施設試験 高血圧の多施設試験では心不全薬ほど詳細な検討はされていないが,ARBロサルタンとβ遮断薬アテノロールを比較したLosartan Intervention For Endpoint Reduction in Hypertension(LIFE)試験のサブ解析では,NT-proBNPが,心肥大を伴った高血圧患者において心血管イベントの予後予測因子であることが示され 47),治療効果判定についてロサルタン投与群でNT-proBNP値が低下した48).また高血圧の試験ではないが,心不全を除いた心血管病変のハイリスク患者を対象として,ACE阻害薬ラミプリルを用いたHeart Outcomes Prevention Evaluation(HOPE)試験においてもNT-proBNPは心血管イベントの予後予測指標であった49).しかし,高血圧症例におけるBNP,NT-proBNP測定の意義については心不全症例での測定と比較すると未解決の部分が多く,今後の検討を待たねばならない50).

4.�慢性心不全,急性心不全治療指標としての可能性について

 心不全患者では観察開始時のBNP,NT-proBNP値よりも治療にて安定後の数値のほうが,予後予測能が高いことが知られている51,52).特に急性心不全患者を対象にした場合その傾向が強く,Bettencourtらの急性心不全患者を対象にした報告でも入院時のNT-proBNP値よりも退院時のNT-proBNP値のほうが著明に予後予測因子として強い

(図5)51).この事実はBNP,NT-proBNPが治療効果と平行して変動しており,治療効果判定に使用可能な指標であることを強く示唆している.しかしBNP,NT-proBNP測定が心不全領域において診断,予後推定に有用であるということはガイドラインレベルでも異論のないところであるが,治療効果判定としての使用法については,1)絶対値の持つ意味が個人により異なる,2)生物学的変動(Biologic vari-ability)が NT-proBNPで20%,BNPで30%と大きい53),3)使用する測定系により絶対値が異なる,4)β遮断薬導入直後は数値が上昇することがある54),5)BNP,NT-proBNP

The levels of NT-proBNP in plasma were measured in 25of the 58 patients readmitted during follow-up. ReadmissionNT-proBNP in these patients was significantly higher thanNT-proBNP at discharge from the index hospitalization(19 409.6�34 030.6 versus 13 004.7�32 789.7 pg/mL;P�0.001). On the other hand, NT-proBNP at the end offollow-up in 27 of the 89 patients without events wassignificantly lower than the discharge values (2720.7�384.3versus 4643.0�3819.2 pg/mL; P�0.001).

Twenty-five patients had �2 hospitalizations duringfollow-up. The discharge NT-proBNP levels in these patientswere higher than in patients with only 1 hospitalizationduring follow-up (27 477.3�44 617.2 versus 11 432.7�11 847.9 pg/mL; P�0.05).

When admission and discharge NT-proBNP levels weredichotomized according to the median, only the dischargelevel was significantly associated with time to an adverseevent (Figure 1). The variation of NT-proBNP levels,expressed by the change in levels during hospitalization,was the strongest predictor of death or readmission. Figure

2 presents the Kaplan-Meier cumulative hospitalization-free survival curve according to the change in NT-proBNP.

Table 4 shows the final multivariate Cox regression modelperformed by a stepwise method starting with all variablesthat in univariate analysis were significantly associated witha higher hazard of dying or being readmitted.

When death as the only end point was analyzed, the resultswere very similar, except that age and atrial fibrillation weresignificant predictors of death in univariate analysis. Themultivariate model for the explanation of death is shown inTable 4.

DiscussionThese results strongly suggest that variations in NT-proBNP levels during hospitalization and predischargeNT-proBNP levels are predictors of hospital readmissionand death within 6 months of discharge of hospitalized HFpatients. Thus, measurement of NT-proBNP is potentially

TABLE 3. Univariate Cox Regression Analysis for the Identificationof Predictors of Death and/or Hospital Readmission After DischargeFrom Index Hospitalization Resulting From HF

HR 95% CI

Male gender (vs female) 0.69 0.42–1.12

Age 1.01 0.99–1.04

Ischemic origin (vs other origins) 1.06 0.66–1.72

Diabetes mellitus 0.76 0.47–1.22

Atrial fibrillation 1.38 0.86–2.24

LV systolic function (vs preserved)

Mildly to moderately depressed 1.33 0.65–2.70

Severely depressed 1.42 0.67–3.03

Not assessed 1.76 0.80–3.88

Systolic blood pressure at discharge 0.995 0.981–1.009

Diastolic blood pressure at discharge 0.999 0.979–1.018

Heart rate at discharge 1.03 1.009–1.051

Serum urea at discharge 1.00 0.995–1.006

Serum creatinine at discharge 0.98 0.75–1.28

Serum sodium at discharge 1.005 0.937–1.077

Length of stay 1.02 1.00–1.05

Diuretic 1.16 0.16–8.35

ACE inhibitor 0.41 0.23–0.74

�-Blocker 0.86 0.52–1.42

Spironolactone 1.02 0.62–1.68

NYHA class at discharge III/IV (vs I/II) 2.14 1.23–3.71

Hypervolemic at discharge 2.23 1.29–3.82

Admission NT-proBNP (1000-pg/mL increase) 1.012 1.005–1.020

Discharge NT-proBNP (1000-pg/mL increase) 1.018 1.012–1.024

Change in NT-proBNP (vs decreased �30%)

Changed �30% in either direction 2.19 1.23–3.91

Increased �30% 6.64 3.60–12.23

LV indicates left ventricular. Figure 1. Cumulative hospitalization-free survival according toNT-proBNP plasma level at admission (median, 6778.5 pg/mL)and discharge (median, 4137.0 pg/mL).

Bettencourt et al NT-proBNP in Decompensated Heart Failure 2171

by TADASHI MIYAMOTO on October 6, 2008 circ.ahajournals.orgDownloaded from

The levels of NT-proBNP in plasma were measured in 25of the 58 patients readmitted during follow-up. ReadmissionNT-proBNP in these patients was significantly higher thanNT-proBNP at discharge from the index hospitalization(19 409.6�34 030.6 versus 13 004.7�32 789.7 pg/mL;P�0.001). On the other hand, NT-proBNP at the end offollow-up in 27 of the 89 patients without events wassignificantly lower than the discharge values (2720.7�384.3versus 4643.0�3819.2 pg/mL; P�0.001).

Twenty-five patients had �2 hospitalizations duringfollow-up. The discharge NT-proBNP levels in these patientswere higher than in patients with only 1 hospitalizationduring follow-up (27 477.3�44 617.2 versus 11 432.7�11 847.9 pg/mL; P�0.05).

When admission and discharge NT-proBNP levels weredichotomized according to the median, only the dischargelevel was significantly associated with time to an adverseevent (Figure 1). The variation of NT-proBNP levels,expressed by the change in levels during hospitalization,was the strongest predictor of death or readmission. Figure

2 presents the Kaplan-Meier cumulative hospitalization-free survival curve according to the change in NT-proBNP.

Table 4 shows the final multivariate Cox regression modelperformed by a stepwise method starting with all variablesthat in univariate analysis were significantly associated witha higher hazard of dying or being readmitted.

When death as the only end point was analyzed, the resultswere very similar, except that age and atrial fibrillation weresignificant predictors of death in univariate analysis. Themultivariate model for the explanation of death is shown inTable 4.

DiscussionThese results strongly suggest that variations in NT-proBNP levels during hospitalization and predischargeNT-proBNP levels are predictors of hospital readmissionand death within 6 months of discharge of hospitalized HFpatients. Thus, measurement of NT-proBNP is potentially

TABLE 3. Univariate Cox Regression Analysis for the Identificationof Predictors of Death and/or Hospital Readmission After DischargeFrom Index Hospitalization Resulting From HF

HR 95% CI

Male gender (vs female) 0.69 0.42–1.12

Age 1.01 0.99–1.04

Ischemic origin (vs other origins) 1.06 0.66–1.72

Diabetes mellitus 0.76 0.47–1.22

Atrial fibrillation 1.38 0.86–2.24

LV systolic function (vs preserved)

Mildly to moderately depressed 1.33 0.65–2.70

Severely depressed 1.42 0.67–3.03

Not assessed 1.76 0.80–3.88

Systolic blood pressure at discharge 0.995 0.981–1.009

Diastolic blood pressure at discharge 0.999 0.979–1.018

Heart rate at discharge 1.03 1.009–1.051

Serum urea at discharge 1.00 0.995–1.006

Serum creatinine at discharge 0.98 0.75–1.28

Serum sodium at discharge 1.005 0.937–1.077

Length of stay 1.02 1.00–1.05

Diuretic 1.16 0.16–8.35

ACE inhibitor 0.41 0.23–0.74

�-Blocker 0.86 0.52–1.42

Spironolactone 1.02 0.62–1.68

NYHA class at discharge III/IV (vs I/II) 2.14 1.23–3.71

Hypervolemic at discharge 2.23 1.29–3.82

Admission NT-proBNP (1000-pg/mL increase) 1.012 1.005–1.020

Discharge NT-proBNP (1000-pg/mL increase) 1.018 1.012–1.024

Change in NT-proBNP (vs decreased �30%)

Changed �30% in either direction 2.19 1.23–3.91

Increased �30% 6.64 3.60–12.23

LV indicates left ventricular. Figure 1. Cumulative hospitalization-free survival according toNT-proBNP plasma level at admission (median, 6778.5 pg/mL)and discharge (median, 4137.0 pg/mL).

Bettencourt et al NT-proBNP in Decompensated Heart Failure 2171

by TADASHI MIYAMOTO on October 6, 2008 circ.ahajournals.orgDownloaded from

図 5 心不全にて入院した患者の予後は入院時よりも(上段),退院時の NT-proBNP 値(下段)のほうが予後と相関する51).

J Cardiol Jpn Ed Vol. 2 No. 3 2008 170

の変動を「前値との差」で治療効果を評価するのか,「前値との比」で評価するのか定まっていない,6)biochemical responder,non responderと予後との直接の相関をみた報告数がまだ十分でないなどの理由により,National Acade-my of Clinical Biochemistry Laboratory Medicine Prac-tice GuidelineでもClass III,エビデンスレベルBの扱いとなっている2). Chengらは退院時,自覚症状が改善していてもBNP値に改善がみられない乖離現象を示す患者の予後は不良であると述べた55).Millerらは急性心不全患者を対象にNT-pro-BNPを経時測定したが,全例治療により自覚症状の改善が得られた患者群であったにもかかわらず,biochemical res-ponder(確立された定義はないが,彼らの検討では前値より20%以上の数値の低下をbiochemical responderとしている)の割合は30%と著明に低かったことを報告し,その考察の中でも「自覚症状の改善とbiochemical responderの驚くべき乖離」と表現している56).Bettensourt,JanuzziらはNT-proBNPコンセンサスパネルの中で,急性心不全では前値の30%以上のNT-proBNPの低下を目標とすると述べている57).今後,慢性心不全,急性心不全の治療指標としてBNP,NT-proBNPを測定するためには,生物学的変動以上の数値の変化をbiochemical responderとする形で,学会レベルでのコンセンサスが必要と考えられる.

心不全関連イベントの予防を目的とした外来でのBNP,NT-

proBNPガイド治療の可能性について

 慢性心不全患者は経過中に入退院を繰り返して状態が悪化してゆく58).従って入院回避のためのシステム構築が必要であるが,学問的というよりは社会的な要素も強くなり,論文として発表が困難な領域である59).Throughtonは69例のLVEF< 40%の慢性心不全患者について,外来においてNT-proBNP < 200 pmol/ℓ(約1,680 pg/ml)を目標として治療したNT-proBNPガイド群と従来の臨床評価のみで治療した群の経過を観察し,NT-proBNPガイド群のほうが,心血管イベントの有意な減少が得られたと報告した.NT-proBNPガイド群ではACE阻害薬,ループ利尿薬,スピロノラクトンの処方が多かったが,LVEFの改善は両群とも同程度であった60).しかし,実際の臨床では予後不良患者の場合,低血圧や腎機能の悪化によりBNP,NT-proB-NP値の目標数値にまで到達不可能なことも多い.従って,

当初より母集団の患者の重症度により結果が異なることが予想されていた.多施設試験STARS-BNP(Systolic Heart Failure Treatment Supported by BNP)ではEF< 45%の慢性心不全患者220例が,標準治療群とBNP値ガイド群

(Biocite Triage BNP <100 pg/mlが目標)に振り分けられ,BNPガイド群では心不全死と心不全入院の減少がみられた61).BNPガイド群ではACE阻害薬,β遮断薬が有意に多く処方されていたが,観察終了時に両群に体重差は認められなかった.また,BNPガイド群では観察開始時352±260 pg/mlであったBNP値は3カ月後284±180 pg/mlまで減少したが,実際にBNP <100 pg/mlまで低下した患者の割合は,観察開始時16%,3カ月後で33%であった.Strategies for Tailoring Advanced Heart Failure Regi-mens in the Outpatient Setting: Brain Natriuretic Pep-tide Versus the Clinical Conges Tion Score(STAR-BRITE)試験ではBNPガイド群に有用な結果は得られなかったが(2006年AHAシカゴでの口頭発表より),EF< 35%という重症患者が対象であったことが,良い結果が得られなかった原因の可能性もある62).NT-proBNPガイド治療の多施設試験としてはNT-proBNP-Assisted Treat-ment to Lessen Serial Cardiac Readmission and Death

(BATTLESCARRED)が進行中である63).

5.急性冠症候群,狭心症における測定 心筋梗塞患者で血中BNPが早期より検出されるという報告は古く,Moritaらは心筋梗塞患者で血中BNPが数時間後より上昇し,重症患者では2峰性になることを報告した 64).その後,心筋梗塞後3,4週間後のBNP値が平均約5年の観察期間という長期予後予測因子であることも報告され 65),第1ピークは虚血に対する急性反応を反映してIL-1β,エンドテリン-1,アンジオテンシンIIが BNP産生の刺激因子であり,第2ピークは心筋リモデリングによる心負荷を反映すると考察された.Omlandらの急性冠症候群における検討では,NT-proBNPの上昇は心不全を認めない患者においてもみられ,Killip分類とは独立した予後予測指標であった66). 欧米の多施設試験では非ST上昇型心筋梗塞を中心に検討され,Orbofiban in Patients with Unstable coronary Syn-dromes-Thrombolysis In Myocardial Infarction(OPUS-TIMI)16(BNP測定)67),Treat Angina with Aggrastat

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 171

循環器疾患における血中BNP,NT-proBNP測定の意義

and determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombolysis In Myocardial In-farction(TACTICS-TIMI)18(BNP測定)68),Fragmin and Fast Revascularization During Instability in Coronary Artery Disease(FRISC)II(NT-proBNP測定)69),Global Utilization of Strategies to Open occluded arteries(GU-STO)IV(NT-proBNP測定)70),Platelet Receptor Inhibi-tion in Ischemic Syndrome Management(PRISM)(NT-proBNP測定)71)試験などのサブ解析としてBNP,NT-pro-BNPが測定された.いずれも急性冠症候群においてBNP,NT-proBNPは心筋トロポニンとは独立した予後予測指標であるとの結果が多い.FRISC-IIでは2日,6週間,3カ月,6カ月後の採血も行われ,NT-proBNP値は慢性期の値ほど強い予後予測指標であることが示されている69).またGU-STO IVなどではNT-proBNP値が高値であれば侵襲的冠動脈インターベンションの効果が高いことが示された72,73).急性冠症候群の病態には炎症も含まれるが,血中 CRPも急性冠症候群において予後予測因子である.Morrow, Braunwaldらは急性冠症候群において,心筋障害の指標

(トロポニン),心筋負荷の指標(BNP,NT-proBNP),炎症の指標(hs-CRP,CD40L),動脈硬化促進の指標(Hb- A1c,血糖),血管損傷の指標(クレアチニンクリアランス,微量アルブミン尿)などを組み合わせてマルチマーカーストラテジーとしてリスク評価することを提唱している74).急性冠症候群におけるバイオマーカーガイドラインにおいて,トロポニンの他にBNP,NT-proBNPを測定しリスク評価に用いることはClass IIa,エビデンスレベルAとなっているが,測定のタイミング,リスク評価におけるカットオフ値については今後の検討を要する1). 安定狭心症患者については運動負荷による虚血により,BNPが一過性に上昇するとの報告もあるが 75).Kragelundらは安定狭心症患者において左室機能とは無関係にNT-proBNPが将来の総死亡の予測指標であることを述べ76),Bibbins-Domingoらは左室収 縮機能,拡張機能,CRP,心筋トロポニンTなどを補正しても,NT-proBNPが安定狭心症患者において心血管イベントの予測指標であることを報告した77).

6.一般住民における測定と,正常値 National Academy of Clinical Biochemistry and IFCC

CommitteeによるとBNP,NT-proBNPの正常値は年齢,性別に健常者の97.5thパーセンタイル値を用い,各測定系のばらつきを示す% coefficient variation(CV)は15%以下となっている78).日本でのNT-proBNPの2007年6月からの改定添付文書では正常値について,35.1±12.5歳で男女とも55 pg/mlと記載されている79).一方,正常値に近い数値の差でもBNP,NT-proBNP値は将来の心血管イベントの予測因子であることが最近報告された.フラミンガムオフスプリング研究の第6サイクル目の調査に参加した3,346例の被験者において,BNPが高値であるに従い将来の死亡,初回の重篤な心血管イベント,心不全,心房細動,脳卒中発作または一過性脳虚血発作は有意に増加した80).NT-pro-BNPについても同様の報告があるが 81),いずれも心不全の診断,予後予測,治療効果判定における値とは異なり,BNP値で20 pg/ml前後以下,NT-proBNP値で100 pg/ml前後以下の低い値での検討である.これらの結果からも,真の基準値は健常人より算出すべきと考えられる.

7.左室拡張機能障害とBNP,NT-proBNP 左室拡張機能障害による心不全は,心不全患者の約半数にみられ,高齢の女性に多く高血圧の合併も多い82).予後は不良で,心不全入院や死亡率は左室収縮機能障害よりわずかによい程度であり,左室収縮機能障害の患者の予後は年代を追って少し改善しているが,拡張機能障害の患者ではあまり改善していない83). 拡張機能障害におけるBNP,NT-proBNP値は収縮機能障害と比較してはやや低値であるが 84),壁応力を反映しており85),収縮機能障害時と同様に予後規定因子である86,87).しかし,実際の臨床で拡張機能障害におけるBNP,NT-proBNP値をどのように使用するかは,収縮機能障害におけるBNP,NT-proBNP測定ほど明確になっていない.またRedfieldらの一般住民を対象とした報告ではBNPの拡張機能障害の検出感度,特異度はそれぞれ75%,69%と大変低く,BNP測定単独で拡張機能障害の検出は不可能と推測できる88). 現状ではBNP,NT-proBNP値自身は左室収縮機能障害,拡張機能障害を区別できないが,心エコー所見にて左室収縮機能が保たれているにもかかわらずBNP,NT-proBNP値が高い場合は,拡張機能障害を疑う根拠になると思われる89).また,カンデサルタンを用いた心不全の大規模試

J Cardiol Jpn Ed Vol. 2 No. 3 2008 172

験であるCHARM(Candesartan in Heart Failure: Assess-ment of Reduction in Mortality and morbidity)試験のpreservedアームの心エコーサブ解析では,心エコーにてmitral inflow patternが 正常 の 場 合,pseudnormal pat-ternと鑑別するためにNT-proBNPを測定している90).

8.�心不全患者のリスク評価における心筋トロポニンとの同時採血について

 臨床において心筋トロポニンT(cTnT),心筋トロポニンI(cTnI)測定の最も重要な使用方法は急性心筋梗塞の早期診断,リスク層別化であるが 1),近年その測定感度の高さから心不全患者においても微小心筋傷害を検出できることが報告されている2,91,92).慢性心不全患者において,cTnT,cTnIは心不全の原因に関係なく,BNP,NT-pro-BNPとは独立した予後予測因子であることが報告されており93-95),最近慢性心不全治療薬の多施設試験であるVal-sartan Heart Failure Trial(Val-HeFT)のサブ解析でも,同様の結果が報告された96)(この解析には従来のcTnTのほか,precommercial assayであるhigh sensitive(hs)-TnTも測定されており,非常に低濃度のhs-TnTでも予後予測指標であることが示されている).また急性心不全においても同様にcTnTが BNP,NT-proBNPとは独立した予後予測因子であることが,急性心不全のレジストリーであるAD-HERE97)やPRIDE試験のサブ解析のデータ98)から示されている.現在のところガイドラインでは心不全患者のリスク評価にcTnT,cTnIを測定することはClass IIb,エビデンスレベルBとなっているが 2),将来はPeacockやBraun-waldらが最近New England Journal of Medicineで述べているように心不全の一般検査となる可能性もあると思われる99,100).

9.迅速小型測定機器の開発 他疾患における生化学指標と異なり,循環器領域では急性心筋梗塞,急性心不全など急性期に直ちに病態を評価し,治療を開始する必要があるため,迅速測定機器の開発が必須であった101).Biosite Triage BNP(日本では使用できない)やエクルーシスNT-proBNPはその迅速さから多くの臨床研究で用いられてきたが,最新機器に求められる機能として重要なものに「迅速性」に加えて,「簡便性」「携帯性」などがある.PATHFAST(三菱化学メディエンス)

は全血でBNP測定が可能な機器である102).またCardiac Reader NT-proBNP(Roche Diagnostics)は全血を専用のキットに滴下して15分後に実数が表示される小型機器である.従来のエクルーシスNT-proBNP(電気化学発光免疫測定法,測定範囲5-35,000 pg/ml,total interassay CVは217pg/mlで4.8%,4,261pg/mlで2.1%)と比較するとCardiac Reader NT-proBNPは(イムノクロマトグラフィー法,測定範囲60-3,000 pg/ml,total interassay CVは163 pg/mlで12.8%,1,166 pg/mlで8.6%)とやや表示範囲が狭 く精度が悪いものの,実際の臨床現場でのエクルーシス NT-proBNP値とCardiac Reader NT-proBNP値の相関はr=0.96と非常に良好であった103).日本ではNT-proBNP測定についてCardiac Readerをさらに小型化させたハンディ タイプのコバス h 232(重量650 g充電可能)が,BNP測定についてはシオノスポット(塩野義製薬株式会社,重量2.1 Kg,BNP測定,充電可能)が発売されており,救急現場や一般外来での診察時検査(point of care test)としての使用が期待される.

文 献1) Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde

J, Storrow AB, Wu AH, Christenson RH. National Acade-my of Clinical Biochemistry. National Academy of Clini-cal Biochemistry Laboratory Medicine Practice Guide-lines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circu-lation 2007; 115: e356-e375.

2) Tang WH, Francis GS, Morrow DA, Newby LK, Cannon CP, Jesse RL, Storrow AB, Christenson RH, Apple FS, Ravkilde J, Wu AH. National Academy of Clinical Bio-chemistry Laboratory Medicine. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical utilization of cardiac biomarker test-ing in heart failure. Circulation 2007; 116: e99-e109.

3) Anand IS, Florea VG, Fisher L. Surrogate end points in heart failure. J Am Coll Cardiol 2002; 39: 1414-1421.

4) Januzzi JL, Richards AM, for the International NT-proB-NP Consensus Panel. Introduction. Am J Cardiol 2008; 101: 1A-2A.

5) Sudoh H, Kangawa K, Minamino N, Matsuo H. A new natriuretic peptide in porcine brain. Nature 1988; 332: 78-81.

6) Saito Y, Nakao K, Itoh H, Yamada T, Mukoyama M, Arai H, Hosoda K, Shirakami G, Suga S, Minamino N, Brain natriuretic peptide is a novel cardiac hormone. Biochem Biophys Res Commun 1989; 158: 360-368.

7) Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi JL Jr. Biology of the natriuretic peptides. Am J Cardiol

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 173

循環器疾患における血中BNP,NT-proBNP測定の意義

2008; 101: 3A-8A.8) Hasegawa K, Fujiwara H, Itoh H, Nakao K, Fujiwara T,

Imura H, Kawai C. Light and electron microscopic local-ization of brain natriuretic peptide in relation to atrial na-triuretic peptide in porcine atrium. Immunohistocyto-chemical study using specific monoclonal antibodies. Circulation 1991; 84: 1203-1209.

9) Hawkridge AM, Heublein DM, Bergen HR 3rd, Cataliotti A, Burnett JC Jr, Muddiman DC. Quantitative mass spec-tral evidence for the absence of circulating brain natriuret-ic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A 2005; 102: 17442-17447.

10) Hammerer-Lercher A, Halfinger B, Sarg B, Mair J, Puschendorf B, Griesmacher A, Guzman NA, Lindner HH. Analysis of Circulating Forms of proBNP and NT-proBNP in Patients with Severe Heart Failure. Clin Chem 2008; 54: 858-865.

11) De Lemos JA, McGuire DK, Drazner MH. B-type natri-uretic peptide in cardiovascular disease. Lancet 2003; 362: 316-322.

12) Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K, Imura H. Receptor selectivity of natriuretic peptide fami-ly, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 1992; 130: 229-239.

13) Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic pep-tide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 1991; 87: 1402-1412.

14) Yeo KT, Wu AH, Apple FS, Kroll MH, Christenson RH, Lewandrowski KB, Sedor FA, Butch AW. Multicenter evaluation of the Roche NT-proBNP assay and compari-son to the Biosite Triage BNP assay. Clin Chim Acta 2003; 338: 107-115.

15) Apple FS, Panteghini M, Ravkilde J, Mair J, Wu AH, Tate J, Pagani F, Christenson RH, Jaffe AS; Committee on Standardization of Markers of Cardiac Damage of the IFCC. Quality specifications for B-type natriuretic pep-tide assays. Clin Chem 2005; 51: 486-493.

16) Daniels LB, Clopton P, Bhalla V, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA, Maisel AS. How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure. Results from the Breathing Not Prop-erly Multinational Study. Am Heart J 2006; 151: 999-1005.

17) Horwich TB, Hamilton MA, Fonarow GC. B-type natri-uretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol 2006; 47: 85-90.

18) Iwanaga Y, Kihara Y, Niizuma S, Noguchi T, Nonogi H, Kita T, Goto Y. BNP in overweight and obese patients

with heart failure: an analysis based on the BNP-LV dia-stolic wall stress relationship. J Card Fail 2007; 13: 663-667.

19) Knudsen CW, Omland T, Clopton P, Westheim A, Wu AHB, Duc P, McCord J, Nowak RM, Hollander JE, Stor-row AB, Abraham WT, McCullough PA, Maisel A. Im-pact of atrial fibrillation on the diagnostic performance of B-type natriuretic peptide concentration in dyspneic pa-tients. An analysis from the Beathing Not Properly Multi-national Study. J Am Coll Cardiol 2005; 46: 838-844.

20) Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC. Plasma brain natriuretic pep-tide concentration: Impact of age and gender. J Am Coll Cardiol 2002; 40: 976-982.

21) Forfia PR, Watkins SP, Rame JE, Stewart KJ, Shapiro EP. Relationship between B-type natriuretic peptides and pul-monary capillary wedge pressure in the intensive care unit. J Am Coll Cardiol 2005; 45: 1667-1671.

22) McCullough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE, Herrmann HC, Steg PG, Westheim A, Knudsen CW, Storrow AB, Abraham WT, Lamba S, Wu AH, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel AS; Breathing Not Properly Multinational Study Investigators. B-type natriuretic peptide and renal func-tion in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kid-ney Dis 2003; 41: 571-579.

23) Tsutamoto T, Wada A, Sasaki H, Ishikawa C, Tanaka T, Hayashi M, Fuijii M, Yamamoto T, Dohke T, Ohnishi M, Takashima H, Kinoshita M, Horie M. Relationship be-tween renal function and plasma brain natriuretic peptide in patients with heart failure. J Am Coll Cardiol 2006; 47: 582-586.

24) Masson S, Latini R, Anand IS, Vago T, Angelici L, Barlera S, Missov ED, Clerico A, Tognoni G, Cohn JN; Val-HeFT Investigators. Direct comparison of B-type na-triuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomat-ic heart failure: The Valsartan Heart Failure (Val-HeFT) data. Clin Chem 2006; 52: 1528-1538.

25) DeFilippi C, van Kimmenade RR, Pinto YM. Amino-ter-minal pro-B-type natriuretic peptide testing in renal dis-ease. Am J Cardiol 2008; 101: 82A-88A.

26) Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA; Breathing Not Properly Multinational Study Investi-gators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161-167.

27) Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, Tung R, Cameron R, Nagurney JT, Chae CU, Lloyd-Jones DM, Brown DF, Foran-Melan-son S, Sluss PM, Lee-Lewandrowski E, Lewandrowski KB. The N-terminal Pro-BNP investigation of dyspnea in

J Cardiol Jpn Ed Vol. 2 No. 3 2008 174

the emergency department (PRIDE) study. Am J Cardiol 2005; 95: 948-954.

28) Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Ge-nis A, Ordonez-Llanos J, Santalo-Bel M, Pinto YM, Rich-ards M. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an interna-tional pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 2006; 27: 330-337.

29) Januzzi JL Jr, Chen-Tournoux AA, Moe G. Amino-termi-nal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symp-toms. Am J Cardiol 2008; 101: 29A-38A.

30) Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol 2007; 50: 2357-2368.

31) Van Kimmenade RR, Pinto YM, Januzzi JL Jr. Impor-tance and interpretation of intermediate (gray zone) ami-no-terminal pro-B-type natriuretic peptide concentrations. Am J Cardiol 2008; 101: 39A-42A.

32) Maisel A, Hollander JE, Guss D, McCullough P, Nowak R, Green G, Saltzberg M, Ellison SR, Bhalla MA, Bhalla V, Clopton P, Jesse R; Rapid Emergency Department Heart Failure Outpatient Trial investigators. Primary re-sults of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). J Am Coll Cardiol 2004; 44: 1328-1333.

33) Chen AA, Wood MJ, Krauser DG, Baggish AL, Tung R, Anwaruddin S, Picard MH, Januzzi JL. NT-proBNP lev-els, echocardiographic findings, and outcomes in breath-less patients: results from the ProBNP Investigation of Dyspnoea in the Emergency Department (PRIDE) echo-cardiographic substudy. Eur Heart J 2006; 27: 839-845.

34) Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M; ADHERE Scientific Advisory Committee and Investigators.Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J Am Coll Cardiol 2007; 49: 1943-1950.

35) Mueller C, Scholer A, Laule-Kilian K, Martina B, Schindler C, Buser P, Pfisterer M, Perruchoud AP. Use of B-type natriuretic peptide in the evaluation and manage-ment of acute dyspnea. N Engl J Med 2004; 350: 647-654.

36) Moe GW, Howlett J, Januzzi JL, Zowall H; Canadian Multicenter Improved Management of Patients With Con-gestive Heart Failure (IMPROVE-CHF) Study Investiga-tors. N-terminal pro-B-type natriuretic peptide testing im-proves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Corcula-tion 2007; 115: 3103-3110.

37) Hildebrandt P, Collinson PO. Amino-terminal pro-B-type natriuretic peptide testing to assist the diagnostic evalua-tion of heart failure in symptomatic primary care patients. Am J Cardiol 2008; 101: 25A-28A.

38) Masson S, Latini R. Amino-terminal pro-B-type natriuret-ic peptides and prognosis in chronic heart failure. Am J

Cardiol 2008; 101: 56A-60A.39) Nishii M, Inomata T, Takehana H, Naruke T, Yanagisawa

T, Moriguchi M, Takeda S, Izumi T. Prognostic utility of B-type natriuretic peptide assessment in stable low-risk outpatients with nonischemic cardiomyopathy after de-compensated heart failure. J Am Coll Cardiol 2008; 51: 2329-2335.

40) Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, Glazer RD, Tognoni G, Cohn JN. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial. Circulation 2003; 107: 1278-1283.

41) Latini R, Masson S, Wong M, Barlera S, Carretta E, Staszewsky L, Vago T, Maggioni AP, Anand IS, Tan LB, Tognoni G, Cohn JN; Val-HeFT Investigators. Incremen-tal prognostic value of changes in B-type natriuretic pep-tide in heart failure. Am J Med 2006; 119: e23-e30.

42) Yan RT, White M, Yan AT, Yusuf S, Rouleau JL, Maggio-ni AP, Hall C, Latini R, Afzal R, Floras J, Masson S, McKelvie RS; Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) Investigators. Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in pa-tients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Am J Cardiol 2005; 96: 698-704.

43) Latini R, Masson S, Anand I, Salio M, Hester A, Judd D, Barlera S, Maggioni AP, Tognoni G, Cohn JN; For the Val-HeFT Investigators. The comparative prognostic val-ue of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur Heart J 2004; 25: 292-299.

44) Hartmann F, Packer M, Coats AJ, Fowler MB, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Anker SD, Amann-Zalan I, Hoersch S, Katus HA. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure. A substudy of the Carvedilol Prospective Randomized Cumulative Sur-vival (COPERNICUS) trial. Circulation 2004; 110: 1780-1786.

45) Hartmann F, Packer M, Coats AJ, Fowler MB, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Trawin-ski J, Amann-Zalan I, Hoersch S, Katus HA. NT-proBNP in severe chronic heart failure: rationale, design and pre-liminary results of the COPERNICUS NT-proBNP sub-study. Eur J Heart Fail 2004; 6: 343-350.

46) Olsson LG, Swedberg K, Cleland JG, Spark PA, Komajda M, Metra M, Torp-Pedersen C, Remme WJ, Scherhag A, Poole-Wilson P; COMET Investigators. Prognostic im-portance of plasma NT-proBNP in chronic heart failure in patients treated with a β-blocker: Results from the Carve-dilol Or Metoprolol European Trial (COMET) trial. Eur J Heart Fail 2007; 9: 795-801.

47) Olsen MH, Wachtell K, Tuxen C, Fossum E, Bang LE, Hall C, Ibsen H, Rokkedal J, Devereux RB, Hildebrandt P. N-terminal pro-brain natriuretic peptide predicts car-

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 175

循環器疾患における血中BNP,NT-proBNP測定の意義

diovascular events in patients with hypertension and left ventricular hypertrophy: a LIFE study. J Hypertens 2004; 22: 1597-1604.

48) Olsen MH, Wachtell K, Tuxen C, Fossum E, Bang LE, Hall C, Ibsen H, Rokkedal J, Devereux RB, Hildebrandt PR. Opposite effects of losartan and atenolol on natriuret-ic peptides in patients with hypertension and left ventricu-lar hypertrophy: a LIFE substudy. J Hypertens 2005; 23: 1083-1090.

49) Blankenberg S, McQueen MJ, Smieja M, Pogue J, Balion C, Lonn E, Rupprecht HJ, Bickel C, Tiret L, Cambien F, Gerstein H, M-nzel T, Yusuf S; HOPE Study Investiga-tors. Comparative impact of multiple biomarkers and N-Terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation 2006; 114: 201-208.

50) Hildebrandt P, Richards AM. Amino-terminal pro-B-type natriuretic peptide testing in patients with diabetes melli-tus and with systemic hypertension. Am J Cardiol 2008; 101: 21A-24A.

51) Bettencourt P, Azevedo A, Pimenta J, Frioes F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide pre-dicts outcome after hospital discharge in heart failure pa-tients. Circulation 2004; 110: 2168-2174.

52) Maeda K, Tsutamoto T, Wada A, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Kinoshita M. High levels of plasma brain natriuretic pep-tide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 2000; 36: 1587-1593.

53) Ordonez-Llanos J, Collinson PO, Christenson RH. Ami-no-terminal pro-B-type natriuretic peptide: analytic con-siderations. Am J Cardiol 2008; 101: 9A-15A.

54) Davis ME, Richards AM, Nicholls MG, Yandle TG, Frampton CM, Troughton RW. Introduction of metoprolol increases plasma B-type cardiac natriuretic peptides in mild, stable heart failure. Circulation 2006; 113: 977-985.

55) Cheng V, Kazanagra R, Garcia A, Lenert L, Krishnaswa-my P, Gardetto N, Clopton P, Maisel A. A rapid bedside test for B-type peptide predicts treatment outcomes in pa-tients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 2001; 37: 386-391.

56) Miller WL, Hartman KA, Burritt MF, Borgeson DD, Bur-nett JC Jr, Jaffe AS. Biomarker responses during and after treatment with nesiritide infusion in patients with decom-pensated chronic heart failure. Clin Chem 2005; 51: 569-577.

57) Bettencourt P, Januzzi JL Jr. Amino-terminal pro-B-type natriuretic peptide testing for inpatient monitoring and treatment guidance of acute destabilized heart failure. Am J Cardiol 2008; 101: 67A-71A.

58) Gheorghiade M, De Luca L, Fonarow GC, Filippatos G, Metra M, Francis GS. Pathophysiologic targets in the ear-

ly phase of acute heart failure syndromes. Am J Cardiol 2005; 96: 11G-17G.

59) Wolfel EE. Can we predict and prevent the onset of acute decompensated heart failure- Circulation 2007; 116: 1526-1529.

60) Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000; 355: 1126-1130.

61) Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, Aupetit JF, Aumont MC, Galinier M, Eicher JC, Cohen-Solal A, Juilli-re Y. Plasma brain natriuretic pep-tide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 2007 Apr 24; 49: 1733-1739.

62) Shah MR, Claise KA, Bowers MT, Bhapkar M, Little J, Nohria A, Gaulden LH, McKee VK, Cozart KL, Manci-nelli KL, Daniels H, Kinard T, Stevenson LW, Mancini DM, O'Connor CM, Califf RM. Testing new targets of therapy in advanced heart failure: the design and rationale of the Strategies for Tailoring Advanced Heart Failure Regimens in the Outpatient Setting: BRain NatrIuretic Peptide Versus the Clinical CongesTion ScorE (STAR-BRITE) trial. Am Heart J 2005; 150: 893-898.

63) Lainchbury JG, Troughton RW, Frampton CM, Yandle TG, Hamid A, Nicholls MG, Richards AM. NTproBNP-guided drug treatment for chronic heart failure: design and methods in the "BATTLESCARRED" trial. Eur J Heart Fail 2006; 8: 532-538.

64) Morita E, Yasue H, Yoshimura M, Ogawa H, Jougasaki M, Matsumura T, Mukoyama M, Nakao K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993; 88: 82-91.

65) Suzuki S, Yoshimura M, Nakayama M, Mizuno Y, Harada E, Ito T, Nakamura S, Abe K, Yamamuro M, Sakamoto T, Saito Y, Nakao K, Yasue H, Ogawa H. Plasma level of B-type natriuretic peptide as a prognostic marker after acute myocardial infarction. A long-term follow-up analy-sis. Circulation 2004; 110: 1387-1391.

66) Omland T, Persson A, Ng L, O'Brien R, Karlsson T, Her-litz J, Hartford M, Caidahl K. N-terminal pro-B-type na-triuretic peptide and long-term mortality in acute coro-nary syndromes. Circulation 2003; 106: 2913-2918.

67) De Lemos JA, Morrow DA, Bentley JH, Omland T, Saba-tine MS, McCabe CH, Hall C, Cannon CP, Braunwald E. The prognostic value of B-type natriuretic peptide in pa-tients with acute coronary syndromes. N Engl J Med 2001; 345: 1014-1021.

68) Morrow DA, de Lemos JA, Sabatine MS, Murphy SA, Demopoulos LA, DiBattiste PM, McCabe CH, Gibson CM, Cannon CP, Braunwald E. Evaluation of B-type na-triuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuret-ic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 2003; 41: 1264-1274.

69) Lindahl B, Lindback J, Jernberg T, Johnston N, Stridsberg

J Cardiol Jpn Ed Vol. 2 No. 3 2008 176

M, Venge P, Wallentin L. Serial analysis of N-terminal pro-B-type natriuretic peptide in patients with non-ST-segment elevation acute coronary syndrome. A Fragmin and Fast Revascularization During Instability in Coronary Artery Disease (FRISC)-II substudy. J Am Coll Cardiol 2005; 45: 533-541.

70) James SK, LIndahl B, Siegbahn A, Stridsberg M, Venge P, Armstrong P, Barnathan ES, Callif R, Topol EJ, Si-moons ML, Wallentin L. N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in pa-tients with unstable coronary artery disease. A Global Uti-lization of Strategies to Open occluded arteries (GUSTO)-IV substudy. Circulation 2003; 108: 275-281.

71) Heeschen C, Hamm CW, Mitrovic V, Lantelme NH, White HD, for the Platelet Receptor Inhibition in Isch-emic Syndrome Management (PRISM) Investigators. N-terminal pro-B-type natriuretic peptide levels for dy-namic risk stratification of patients with acute coronary syndromes. Circulation 2004; 110: 3206-3212.

72) James SK, Lindb-ck J, Tilly J, Siegbahn A, Venge P, Arm-strong P, Califf R, Simoons ML, Wallentin L, Lindahl B. Troponin-T and N-terminal pro-B-type natriuretic peptide predict mortality benefit from coronary revascularization in acute coronary syndromes: a GUSTO-IV substudy. J Am Coll Cardiol 2006; 48: 1146-1154.

73) Jernberg T, Lindahl B, Siegbahn A, Andren B, Frostfeldt G, Lagerqvist Bo, Stridsberg M, Venge P, Wallentin L. N-terminal pro-brain natriuretic peptide in relation to in-flammation, myocardial necrosis, and the effect of an in-vasive strategy in unstable coronary artery disease. J Am Coll Cardiol 2003; 42: 1909-1016.

74) Morrow DA, Braunwald E. Future of biomarkers in acute coronary syndromes: moving toward a multimarker strat-egy. Circulation 2003; 108: 250-252.

75) Sabatine MS, Morrow DA, de Lemos JA, Omland T, De-sai MY, Tanasijevic M, Hall C, McCabe CH, Braunwald E. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. J Am Coll Cardiol 2004; 44: 1988-1995.

76) Kragelund C, Cronning B, Kober L, Hildebrandt P, Stef-fensen R. N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med 2005; 352: 666-675.

77) Bibbins-Domingo K, Gupta R, Na B, Wu AH, Schiller NB, Whooley MA. N-terminal fragment of the prohor-mone brain-type natriuretic peptide (NT-proBNP), cardio-vascular events, and mortality in patients with stable cor-onary heart disease. JAMA 2007; 297: 169-176.

78) Apple FS, Wu AH, Jaffe AS, Panteghini M, Christenson RH, Cannon CP, Francis G, Jesse RL, Morrow DA, New-by LK, Storrow AB, Tang WH, Pagani F, Tate J, Ordonez-Llanos J, Mair J; National Academy of Clinical Bio-chemistry; IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine. Na-tional Academy of Clinical Biochemistry and IFCC Com-

mittee for Standardization of Markers of Cardiac Damage Laboratory Medicine practice guidelines: Analytical is-sues for biomarkers of heart failure. Circulation 2007; 116: e95-e98.

79) Seino Y, Ogawa A, Yamashita T, Fukushima M, Ogata K, Fukumoto H, Takano T. Application of NT-proBNP and BNP measurements in cardiac care: a more discerning marker for the detection and evaluation of heart failure. Eur J Heart Fail 2004; 6: 295-300.

80) Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 2004; 350: 655-663.

81) McKie PM, Rodeheffer RJ, Cataliotti A, Martin FL, Ur-ban LH, Mahoney DW, Jacobsen SJ, Redfield MM, Bur-nett JC. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide. Biomarkers for mortality in a large community-based cohort free of heart failure. Hypertension 2006; 47: 874-880.

82) Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu P. Outcome of heart failure with preserved ejection fraction in apopulation-based study. N Engl J Med 2006; 355: 260-269.

83) Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251-259.

84) Maisel AS, McCord J, Nowak RM, Hollander JE, Wu AH, Duc P, Omland T, Storrow AB, Krishnaswamy P, Abraham WT, Clopton P, Steg G, Aumont MC, Westheim A, Knudsen CW, Perez A, Kamin R, Kazanegra R, Her-rmann HC, McCullough PA; Breathing Not Properly Mul-tinational Study Investigators. Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol 2003; 41: 2010-2017.

85) Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Ki-hara Y, Goto Y, Nonogi H. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and di-astolic heart failure. J Am Coll Cardiol 2006; 47: 742-748.

86) Kirk V, Bay M, Parner J, Krogsgaard K, Herzog TM, Boesgaard S, Hassager C, Nielsen OW, Aldershvile J, Nielsen H. N-terminal proBNP and mortality in hospital-ized patients with heart failure and preserved vs. reduced systolic function: data from the proapective Copenhagen Hospital Heart Failure Study (CHHF). Eur J Heart Fail 2004; 6: 335-341.

87) Valle R, Aspromonte N, Feola M, Milli M, Canali C, Giovinazzo P, Carbonieri E, Ceci V, Cerisano S, Barro S, Milani L. B-type natriuretic peptide can predict the medi-um-term risk in patients with acute heart failure and pre-served systolic function. J Card Fail 2005; 11: 498-503.

88) Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney

Vol. 2 No. 3 2008 J Cardiol Jpn Ed 177

循環器疾患における血中BNP,NT-proBNP測定の意義

DW, Bailey KR, Burnett JC. Plasma brain natriuretic pep-tide to detect preclinical ventricular systolic or diastolic dysfunction. A community-based study. Circulation 2004; 109: 3176-3181.

89) Lubien E, DeMaria A, Krishnaswamy P, Clopton P, Koon J, Kazanegra R, Gardetto N, Wanner E, Maisel AS. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation 2002; 105: 595-601.

90) Persson H, Lonn E, Edner M, Baruch L, Lang CC, Mor-ton JJ, Ostergren J, McKelvie RS; Investigators of the CHARM Echocardiographic Substudy-CHARMES. Dia-stolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol 2007; 49: 687-694.

91) Sato Y, Yamada T, Taniguchi R, Nagai K, Makiyama T, Okada H, Kataoka K, Ito H, Matsumori A, Sasayama S, Takatsu Y. Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated car-diomyopathy are predictive of adverse outcomes. Circula-tion 2001; 103: 369-374.

92) Sato Y, Kita T, Takatsu Y, Kimura T. Biochemical mark-ers of myocyte injury in heart failure. Heart 2004; 90: 1110-1113.

93) Horwich TB, Patel J, MacLellan WR, Fonarow GC. Car-diac troponin I is associated with impaired hemodynam-ics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 2003; 108: 833-838.

94) Miller WL, Hartman KA, Burritt MF, Grill DE, Rodehef-fer RJ, Burnett JC Jr, Jaffe AS. Serial biomarker measure-ments in ambulatory patients with chronic heart failure: the importance of change over time. Circulation 2007; 116: 249-257.

95) Ishii J, Ozaki Y, Lu J, Kitagawa F, Kuno T, Nakano T, Na-kamura Y, Naruse H, Mori Y, Matsui S, Oshima H, No-mura M, Ezaki K, Hishida H. Prognostic value of serum concentration of heart-type fatty acid-binding protein rel-

ative to cardiac troponin T on admission in the early hours of acute coronary syndrome. Clin Chem 2005; 51: 1397-1404.

96) Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, Angelici L, Barlera S, Parrinello G, Maggioni AP, Tognoni G, Cohn JN; Val-HeFT Investigators. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007; 116: 1242-1249.

97) Fonarow GC, Peacock WF, Horwich TB, Phillips CO, Gi-vertz MM, Lopatin M, Wynne J; ADHERE Scientific Ad-visory Committee and Investigators. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE Am J Cardiol 2008; 101: 231-237.

98) Sakhuja R, Green S, Oestreicher EM, Sluss PM, Lee-Le-wandrowski E, Lewandrowski KB, Januzzi JL Jr. Amino-terminal pro-brain natriuretic peptide, brain natriuretic peptide, and troponin T for prediction of mortality in acute heart failure. Clin Chem 2007; 53: 412-420.

99) Peacock WF 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS, Wu AH; ADHERE Investigators. Cardiac troponin and outcome in acute heart failure. N Engl J Med 2008; 358: 2117-2126.

100) Braunwald E. Biomarkers in heart failure. N Engl J Med 2008; 358: 2148-2159.

101) Prontera C, Storti S, Emdin M, Passino C, Zyw L, Zuc-chelli GC, Clerico A. Comparison of a fully automated immunoassay with a point-of-care testing method for B-type natriuretic peptide. Clin Chem 2005; 51: 1274-1276.

102) Kurihara T, Yanagida A, Yokoi H, Koyata A, Matsuya T, Ogawa J, Okamura Y, Miyamoto D. Evaluation of cardiac assays on a benchtop chemiluminescent enzyme immuno-assay analyzer, PATHFAST. Anal Biochem 2008; 375: 144-146.

103) Alehagen U, Janzon M. A clinician's experience of using the Cardiac Reader NT-proBNP point-of-care assay in a clinical setting. Eur J Heart Fail 2008; 10: 260-266.