Bethe- Salpeter approach and lepton-, hadron-deuteron scattering

Post on 24-Feb-2016

54 views 0 download

Tags:

description

Bethe- Salpeter approach and lepton-, hadron-deuteron scattering. V.V.Burov S.G.Bondarenko , E.P.Rogochaya , M.V.Rzjanin , G.I Smirnov– JINR, Dubna A.A.Goy , V.N.Dostovalov , K.Yu.Kazakov , A.V.Molochkov , D.Shulga , S.E.Suskov – FESU, Vladivostok, Russia - PowerPoint PPT Presentation

Transcript of Bethe- Salpeter approach and lepton-, hadron-deuteron scattering

Bethe-Salpeter approach and lepton-, hadron-deuteron scattering

V.V.BurovS.G.Bondarenko, E.P.Rogochaya, M.V.Rzjanin, G.I Smirnov– JINR, Dubna

A.A.Goy, V.N.Dostovalov, K.Yu.Kazakov, A.V.Molochkov, D.Shulga, S.E.Suskov – FESU, Vladivostok, Russia

S.M.Dorkin- Dubna Univ., A.V.Shebeko – Kharkov, M.Beyer – RU, Rostock, W.-Y Pauchy Hwang – NTU Taipei, Taiwan,

N.Hamamoto, A.Hosaka, Y.Manabe, H.Toki –RCNP, Osaka, Japan

1. Introduction2. Basic Definitions.3. Separable Interactions 4. Summary

Introduction Study of static and dynamic electromagnetic properties of light

nuclei enables us to understand more deeply a nature of strong interactions and, in particular, the nucleon - nucleon interaction.

Urgency of such researches is connected to a large amount of experimental data, and also with planned new experiments, which will allow to move in region of the large transfer momenta in elastic, inelastic, and deep-inelastic lepton - nucleus reactions.

At such energies an assumptions of nucleus as a nucleon system is not well justified. For this reason the problems to study in intermediate energy region the nonnucleonic degrees of freedom (Δ-isobars, quarks etc.) and Mesonic Exchange Currents (MEC) are widely discussed.

20/09/2012

Introduction However, in spite of the significant progress being

achieved in this way, the relativistic effects (which a priori are very important at large transfer momenta) are needed to be included.

Other actively discussed problem is the extraction of the information about the structure bound nucleons from experiments with light nuclei . Such tasks require to take into account relativistic kinematics of reaction and dynamics of NN interaction. For this reason const-ruction of covariant approach and detailed analysis of relativistic effects in electromagnetic reactions with light nuclei are very important and interesting.

Bethe - Salpeter approach give a possibility to take into account relativistic effects in a consistent way.

20/09/2012

Bethe –Salpeter Formalism Let us define full two particle Green Function:

Bethe –Salpeter Equation for G:

where

, ; , 1 2 1 2 1 2 1 2G , ; , 0 0 ,x x y y T x x y y

, ; ,, ; , 1 2 1 2 1 2 1 2

4

, ; , 1 2 1 21

, ; , 1 2 3 4 , ; , 3

0

4

0

1 2

, ; , , ; ,

, ; ,

, ; , , ; ,

G

G

G

G ,

kk

K

x x y y x x y y

i dw x x w w

w w w w w w y y

1 2, ; , 1 2 1 2 1 2 2

01, ;G , ,F Fx x y y S x x S y y

20/09/2012

Let us make Fourier transformation of :

where is total, are relative 4-momentum

The expressions for and are similar.

0, ,K G G

1 2 1 2 1 2 1 2

1 2 1 21 2 1 2

, ; , ; ,

exp ,2 2

p p P dx dx dy dy x x y y

x x y yiP ip x x ip y y

V K

p pP

1 2 1

1 2 2

2/ 2 2

P q q q P pp q q q P p

G

1q

2q

1q

2q

p p

0G20/09/2012

Full Green function for two particle system is:

The full one particle Green function is:

1 2 4;

1 2; ;4

, ;2 2

, ; , ; .2 2

G

G2

F F

F F

P Pp p P S p S p p p

P P dkiS p S p p k P k p PV

1 1 .

0FS pp pm i

We will use propagators without mass operator: FS p S p

Mass operator

20/09/2012

T-matrix

0GV TGLet us introduce T-matrix:

; ; ;4

1 2;

, ; , ; , ;2

, ; .2 2

dkp p P p p P i p k P

P PS k

T

T

V

S k

V

k p P

The BSE for T-matrix is:

20/09/2012

Thus a bound state corresponds to a pole in aT-matrix at (M is the mass of the bound

state):

2 2P M

2 2; ;, ; , ,, ,

;p p P R p pP p pP M

TP

P

; , ;R p p P is regular at 2 2P M function,

,P p is a vertex function.

20/09/2012

Vertex function of BSE Let us write the vertex function of BSE:

One can express it by the BS Amplitude:

1 21 2 1 2

1 2

, exp2

0 ,

x xP p dx dx iP ip x x

T x x D P

denotes a state of the deuteron with total momenta

,D P .P

1 2, , .2 2P PP p S p S p P p

20/09/2012

We can obtain the vertex function of BSE using that T- matrix for bound state has pole at :2 2P M

;4

1 2

, , ;2

, .2 2

dkP p i p k P

P PS k S k k

V

P

BSE for vertex function , .P p

,P p ,P k

20/09/2012

The normalization condition follows from: , 0 , 2D P J D P iP

2 2

1 242 , , .

2 22 P M

dk P PP i P k S k S k P kP

BS equation for Amplitude:

1 2

;4, , ; , .2 2 2P P dkP p iS p S p p k P PV k

1. E.E. Salpeter and H.A.Bethe, Phys.Rev. C84(1951) 12322. S. Mandelstam, Proc.Roy.Soc. 233A (1955) 248.3. S.Bondarenko et.al, Prog.Part.Nucl.Phys. 48(2002)449;4. S.Bondarenko et.al, NP, A832(2010)233; NP, A848

(2010) 75; NP, B219-220c (2011) 216; FBS, 49 (2011) 121; PLB, 705(2011)264; JETP Letters, 94(2011)800.

20/09/2012

Solution of BS Equation Separable Kernel of Interaction

– BSE for T-matrix after partial expansion can be written as:

– Separable anzats:

20 0 0 0 02

0 0 0 0 0

, , , ; , , , ;2

, , , ; , ; , , , ; .

ip p p p s p p p p s dq q d q

p p q q s

T

TS q q s q q p

V

p sV

0 0 0 01

, , , ; , , ,N

ij i j ij jiij

V p p p p s g p p g p p

20/09/2012

Then for T – matrix we can write:

00 01

0, ,; .,, ,N

ij i jij

s g p pp p pp s gpT p

Substitution V , T in BSE for T–matrix we can find : ij s 1 1 ,ijij ijs H s

where the can be written as: ijH s

2 0 02

0 0 , ; .2

, ,ij i ji dq q d q S q q s g q q gH s q q

Then radial part of BSA has following form:

00 0, ; ,, ,iij jg cpp p s spp S p

N

i,j=1

where coefficients satisfy the equation: jc s

, 1

0.N

i ik kj jk j

c s H s c s

20/09/2012

NN-scattering Let us consider NN-scattering in -channel ( -

notation). In this case nucleons are on mass shell:

and T-matrix can be parameterized as:

Here are phase shifts of waves, - is mixing parameter. For low energy NN – scattering we can express

phase shift through scattering length a, effective radius of interaction :

3 31 1S D 2 1S

JL

* 20 0 0, / 4 / 2,labp p p p p s m m

= = E

20

* 2

cos 2 1 sin 22 .sin 2 cos 2 1

S DS

S D D

iis

i i

e i eiTp s i e e

S D

2 3* * *01cot .2Srp s p O p

a

3 31 1S D

0r

20/09/2012

Covariant Graz-II kernel of interaction As a starting point we will use for channels: 3 3

1 1S D

221 0

1 0 222 20 11

220

2 0 222 20 12

2 22 20 2 0

3 0 22 22 2 2 20 21 0 22

1 0 2 0 3 0

1, ,

, ,

1, ,

, , , 0

S

S

D

D D S

p pg p p

p p

p pg p p

p p

p p p pg p p

p p p p

g p p g p p g p p

20/09/2012

Solution of BSE The solution of BSE with separable potential can be written as:

Properties of the deuteron and low energy NN-scattering .

31

31

2 3

1 1

3

1

0 0

0 03 3

, ,

, ,

;

;

Sij ij

i

j

S

jD

D

j

j

g p p g p p

g p

c

p g p

s

c s p

%

NR 4 2.225 0.2499 0.8565 0.0241 1.786 5.419 RIA 4.82 2.225 0.2812 0.8522 0.0274 1.78 5.420 Exp. 2.224

60.286 0.8574 0.0263 1.759 5.424

Dp

31S

D2D MeVDQ

2fm / 2e m fm fmD /D S 0r a

20/09/2012

Vertex function 31

0 4 , .S

g p p p p

± 1± 0.6

± 0.2 0 0.2 0.4 0.6 0.8 1p4 (G eV )

00.2

0.40.6

0.81

p (G eV )

0

0.2

0.4

0.6

0.8

1

20/09/2012

Vertex function 31

0 4 , .D

g p p p p

± 2± 1

01

2p 4 ( G e V )

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2

p ( G e V )

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

20/09/2012

19

Relativistic description

220

22 pp pp

Ps

pPpQ

22

1|)(|

p

pgYamaguchi

011)( 222

022 ip

gmassofcenter

p

ppp

2222

11)(

pg

massofcenter

QpQ

0220 ipg p p

Qg No poles

422220 )(

1)(

p

g p pp

Y. Avishai, T. Mizutani, Nucl. Phys. A 338 (1980) 377-412

K. Schwarz, J. Frohlich, H.F.K. Zingl, L. Streit, Acta Phys. Austr. 53 (1981) 191-202

20/09/2012

EMIN-2012 20

At 0:1) Poles do not cross the counter2) Good limit

ip Esp 2/)2,1(0

222)4,3(0 ip p

222)6,5(0 ip p

R.E. Cutkosky, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, Nucl. Phys. B 12 (1969) 281-30020/09/2012

EMIN-2012 21

Form factors of the separable kernel

41

221

220

220][

1 )()(

p

pg

pp

pP

The uncoupled channels

242

222

220

2202

3220][

2 ))(()()(

)(

p

pppg c

ppp

pP

3P0,1P1,3P1:

1S0:

41

221

220

2201][

1 )()()(

ppg c

ppppS

242

222

220

22202

220][

2 ))(())(()(

p

ppg c

pppppS

43

223

220

220][

3 )()()(

p

pgp

ppS

20/09/2012

EMIN-2012 22

The coupled channel 3S1-3D1

41

221

220

2201][

1 )()()(

ppg c

ppppS

242

222

220

22202

220][

2 ))(())(()(

p

ppg c

pppppS

)))(()(())(()( 4

3222

3222

0431

2231

220

22203

220][

3

pp

ppg c

ppppppD

44

224

220

220][

4 )()()(

p

pgp

ppD

0)()()()( ][2

][1

][4

][3 pppp DDSS gggg

)()(

)()()(][

2244233222111

][1144133122111

13

pcccc

pccccpS

S

g

ggS

)()(

)()()(][

4444343242141

][3344333232131

13

pcccc

pccccpD

D

g

ggD

The vertex functions of the deuteron

220

2

20

04 ))02((|)]|,()[2(||

)2(2 kEMkMEddk

Mp 2

ikgkki

kd

ldk

dl

The normalization

20/09/2012

EMIN-2012 23

1P1+,3P1

+

consts ijij )(

1S0+,3P

0+

ijij )()( 0 sss

3S1+-

3D1+:

20

)(ms

s

ijij

0|)(|det 1

dij Ms

The calculation scheme

20/09/2012

EMIN-2012 24

Р-waves:

n

i 1

2exp2exp2 ))(())()(( iii sss

1S0+: 2exp2exp

1

2exp2exp2 )()())(())()(( aaasss iii

n

i

3S1+-3D1

+:

2exp2exp2expexp

1

2exp2exp2exp2exp2

)()())(())()((

))(())()(())(())()((

aaasss

ssssss

iii

iDiDiDiSiSiS

n

i

The Minimization procedure

20/09/2012

EMIN-2012 25

as (fm) r0s (fm)

MY3 -23.750 2.70

MYQ3 -23.754 2.78

Experiment -23.748(10) 2.75(5)

pd(%) at(fm) r0t(fm) Ed(MeV)

MY4 6 5.417 1.75 2.2246

MYQ4 6 5.417 1.75 2.2246

CD-Bonn 4.85 5.4196 1.751 2.224575

Graz II 4.82 5.42 1.78 2.225

Experiment - 5.424(4) 1.759(5) 2.224644(46)

1S0+

:

3S1+-

3D1+:

O. Dumbrajs et al., Nucl Phys. B 216 (1983) 277

20/09/2012

EMIN-2012 26

Inelasticity!

20/09/2012

EMIN-2012 2720/09/2012

EMIN-2012 2820/09/2012

EMIN-2012 29

SAID (http://gwdac.phys.gwu.edu)CD-Bonn: R. Machleidt, Phys. Rev. C 63 (2001)

024001SP07: R.A. Arndt et al., Phys. Rev. C 76 (2007)

025209

20/09/2012

EMIN-2012 3020/09/2012

EMIN-2012 31

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0204060

T L ab (G eV )

-60-40-20

020 M Y 2

S P 07M Y I2

(1 P 1+ )(d

eg)

(1 P 1+ )(d

eg)

20/09/2012

EMIN-2012 3220/09/2012

EMIN-2012 3320/09/2012

EMIN-2012 34

0.0 0.5 1.0 1.5 2.0 2.5 3.00

20406080

T L ab (G eV )

-60-40-20

0 M Y 2S P 07M Y I2

(3 P 0+ )(d

eg)

(3 P 0+ )(d

eg)

20/09/2012

EMIN-2012 35

0 1 2 3

0.0

0.2

0.4

0.6

0.8(

MYI

2 )2-(

exp )2

T L ab (G eV )

B re it-W ig n er R es o n an c e fit

T L a b ,1=0.872 G eV , M *1=2.27 G eV , 1=0.199 G eV ;T L a b ,2=1.595 G eV , M *2=2.55 G eV , 2=1.335 G eV ;F u l l fit

20/09/2012

EMIN-2012 3620/09/2012

EMIN-2012 3720/09/2012

EMIN-2012 38

0.0 0.5 1.0 1.5 2.0 2.5 3.00

20406080

T L ab (G eV )

-80-60-40-20

0M Y 2S P 07M Y I2

(3 P 1+ )(d

eg)

(3 P 1+ )(d

eg)

20/09/2012

EMIN-2012 39

Graz II: L. Mathelitsch, W. Plessas, M. Schweiger, Phys. Rev. C 26 (1982) 65

20/09/2012

EMIN-2012 4020/09/2012

EMIN-2012 41

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0204060

T L ab (G eV )

-80

-40

0

40 M Y 6S P 07M Y I6

(1 S 0+ )(d

eg)

(1 S 0+ )(d

eg)

20/09/2012

EMIN-2012 4220/09/2012

EMIN-2012 4320/09/2012

EMIN-2012 4420/09/2012

EMIN-2012 45

20/09/2012

EMIN-2012 46

0 1 2 30

20406080

T L ab (G eV )

-120-80-40

04080

120

M Y 6S P 07M Y I6-n ewS P 00,F G A

(3 S 1+ )(d

eg)

(3 S 1+ )(d

eg)

20/09/2012

EMIN-2012 47

0 1 2 3-80-60-40-20

0

T L ab (G eV )

-80-60-40-20

02040

M Y 6S P 07M Y I6-n ewS P 00,F G A(3 D 1+ )

(deg

)(3 D 1+ )

(deg

)

20/09/2012

EMIN-2012 48

Deuteron “Wave function”

0.0 0.5 1.0 1.5 2.0 2.5 3.010 -3

10 -2

10 -1

10 0

10 1

10 2

| S|(G

eV-3

/2)

p (G eV /c )

M Y Q 6 M Y 6 G raz II (N R ) G raz II P ar is

20/09/2012

EMIN-2012 49

Deuteron “Wave function”

0.0 0.5 1.0 1.5 2.0 2.5 3.010 -3

10 -2

10 -1

10 0

| D|(G

eV-3

/2)

p (G eV /c )

M Y Q 6 M Y 6 G raz II (N R ) G raz II P ar is

20/09/2012

EMIN-2012 50

Summary BS approach

– is full covariant descriptions of two body system;– allows to build the multirank covariant separable

potential MYN and MYIN of the neutron-proton interaction for coupled and uncoupled partial-waves states with the total angular momentum J=0,1,2 till the kinetic energy 3GeV.• The description of the phases and inelasticity parameter with

MYN and MYIN is very good.• Deuteron MYN wave functions are very close to

nonrelativistic one at small momenta less then 0.7 GeV/c.• Dibaryon resonances are proposed.

20/09/2012

EMIN-2012 51

Summary BS approach:

– can give very reasonable explanation structure functions, form factors and tensor polarization of deuteron in elastic eD-scattering;

– gives in one iteration approximation pair mesonic currents– gives foundations of light cone dynamics approaches;– gives good instrument to study polarization phenomena in

elastic, inelastic, deep-inelastic lepton deuteron scattering;– is a powerful tool for investigation of the reactions with the

deuteron (as well as reactions with the few-body systems).

20/09/2012

EMIN-2012 52

Plans To investigate the influence of the complex part of the

interaction kernel (namely, influence of the inelasticity parameter) to the exclusive cross section and polarization characteristics of the deuteron electrodisintegration for several kinematic conditions (Sacle, JLab).

To calculate the observables in the photo- and hadron-deuteron reactions.

20/09/2012

EMIN-2012 5320/09/2012

Evolution of Nucleon Structure in Nuclei Let us consider Deep Inelastic Scattering (DIS) leptons from

nuclei:

Cross section can be written as:

Lepton tensor has form:

Hadron tensor we write as:

l A l X

2

4 .,,L k Wdq

k P p

1, .2

s s s s

ss

L k k u k u k u k u k

4 41, 2 .2 n

n

W P p P j n n j P P q p

EMIN-2012 5420/09/2012

Structure functions in DIS Hadron tensor can be related to amplitude for forward Compton

scattering T-matrix by means of the unitary relation:

Using Gauge invariance condition:

we can write q0 is the photon energy):

1, Im , .2

W P q T P q

, 0,q W P q

222

1 2 2 2 2

,, ,

W qq q P q P qW P q W q g P q P qq M q q

EMIN-2012 5520/09/2012

In Bjorken limit

we can write the hadron tensor in following form:

Here are scale invariant structure functions (SF).

2 2

21 1

22 2

2

, ,

, ,

, ,

2

q Q

MW q F x

W q F x

qxM

1 22 2 2

1,q q P q P qW P q g F x P q P q F xq P q q q

1 2,F x F x

EMIN-2012 5620/09/2012

Basic Approximations There are three basic groups of models for

explanation of the EMC effect by taking into account:– Nucleon separation energy, relativistic fermi-motion, NN-

correlations– Non-nucleon degrees of freedom;– The quark confinement radius changes.

Basic Approximations:– The one boson approximation in the bound state equation;– Treatment of the DIS amplitude as an incoherent sum of

amplitudes on individual constituents;– Representation of the hadron tensor of the bound nucleon in

the same form as for free nucleon

EMIN-2012 5720/09/2012

The first assumptions allows us to use BSE. The second assumptions allows to treat the squared amplitude of

DIS on the nucleus as the sum of the squared amplitudes for scattering on individual constituents.

The available experimental data for DIS on nuclei is mainly in the region x>10-3 and Q2>1GeV2, and shows that the ratio FA

2/FD2

is independent of Q2. In the calculations we shall restrict ourselves to the Bjorken limit, where the first and second approximations are well justified.

The third assumptions which allows the hadron tensor of a virtual nucleon to be represented through SF of free nucleon. But this representation is valid when the nontrivial differences between scattering on free and bound nucleon are small. There are three such differences or so called of shell effects: – Impossibility of using the condition of gauge invariance for the bound

nucleon; – The contribution of antinucleon degrees of freedom;– The unsynchronous of bound nucleons.

EMIN-2012 5820/09/2012

Nuclear Compton Amplitude Nuclear Compton amplitude can be written as:

where , relative time is:

Bethe-Salpeter vertex function is:

4, , 0 , ,A iqxT P q i d xe A P T j x j A P , ,2 1, 0 , , , ,A A

P PnA P T j x j A P dZdZ Z G Z x Z Z

1, 1,n nZ z z dZ dz dz ;

, 2 ,, , .A AP n PndZdZ S Z G Z Z Z

0 0.1

1 n

i j ij

z zn

EMIN-2012 5920/09/2012

The kernel of the integral BS equation is:

The kernel is the anzats of the theory:– One bozon exchange kernel:

– Separable form of the kernel:

– BS vertex in the momentum space is:

1 12 2, , , .n nnG Z Z S Z Z G Z Z

1 12

,

, , ;n m i m j i ji j m

G Z Z z z z z

2,

, .n ij i ji j

G Z Z g Z g Z

14 41 , 1, , .

n

j jj

i k xA

n P nnS P K P K dx dx e x x

EMIN-2012 6020/09/2012

The BS Amplitude of Compton scattering for deuteron

EMIN-2012 6120/09/2012

Structure functions of deuteron Using Mandelstam technique and neglecting

terms of order 1/Q2 and (MD – 2E)2 we arrive to expression for structure function of deuteron:

0 /2

3 23

3 232 2

2

0

2

2

2

2

3

22

2

22,

2

4

,

.,D

D

D

D

D ND N

NN

N

D

D

D

D D

ND

D

NN

E MD

k

M EM E

M

F M k

M k

x

E

M

E kd k mM ME

xM

F x

dF

E kM

x

M E

d

k

x

F x k

EMIN-2012 6220/09/2012

Normalization conditions The momentum sum rule is:

The baryon sum rule is:

0 0

3 2

3 3

2

2

0

2 ,22

,2

22

2

4

n

D D

D

DD

D

D

k

D

k

Dd k m E E

M MEM E

M EM k

MM Mk

EM k

0 0

3 2

3 220

2 2 1.,2

,4 22 nDD k k

DD

D

DMd k mM kE

M Ek

M M Ek M

EMIN-2012 6320/09/2012

Nonrelativistic limit Let us expand the enegry of the bound nucleon in power of p2/m2 :

where T=2E-2m is nucleon kinetic energy and =M-2m is the binding energy, and analog of nonrelativistic function is:

The normalization condition has the form:

22

33

2 22

3 1 ,22

N

NN

ND ND N

k dF xF x F x

dxd k T xk k

m m

0 / 2

2

22 2

3.

4 2,

DD

E MD kD

k MME

kM E

m

3

32 1.

2k kd

EMIN-2012 64

EMC – effect (1983)Ratio structure functions Fe/D

20/09/2012

1.4

1.3

1.2

1.1

1.0

EMIN-2012 65

European Muon CollaborationData for the ratio of iron and deuterium structure functions are from the EMC [Aubert J.J. e.al. PL, 123B, 275(1983)]

( □ ) and from the SLAC [Arnold R.G. at al., PRL, 52,727(1984)] (•) experiments. Theory [Akulinichev et al.

Preprint INR P-0382(1984)]: the values V= -50Mev, PF= 270 Mev/c have been used in numerical calculations

20/09/2012

Wrong!!!

EMIN-2012 6620/09/2012

In Quasipotential (QP) approach with synchronous nucleons:

33

32 2

2 21 .

22

NDD N

D ND

D

Tkd k xm

dFk

xF x F x

dxm

Fermi motion

NRlimit

QP

EMIN-2012 6720/09/2012

56

2 2/Fe DF x F x 4

2 2/He DF x F x

EMC - effect

EMIN-2012 6820/09/2012

Ratio of SF’s in BS approach

EMIN-2012 6920/09/2012

EMIN-2012 7020/09/2012

Nuclear effects for the ratio of SF’s.Universal description for all A.

EMIN-2012 7120/09/2012

Summary BS approach:

– is full covariant descriptions of two body system;– allows to describe the properties of deuteron with separable

potential;– can give very reasonable explanation structure functions,

form factors and tensor polarization of deuteron in elastic eD-scattering;

– gives in one iteration approximation pair mesonic currents– gives foundations of light cone dynamics approaches;– gives good instrument to study polarization phenomena in

elastic, inelastic, deep-inelastic lepton deuteron scattering;

EMIN-2012 7220/09/2012

Summary BS approach:

– allows by the model-independently the SF of light nuclei to be calculated in terms of SF of nuclear fragments and three-dimensional momentum distribution;

– gives the good explanation of the behavior for SF’s ratios of the light nuclei to the SF of the free nucleon;

– indicates that the modification of the nucleon structure of lightest nuclei is a manifestation of unsynchronous behavior of bound nucleon;

– gives new understanding fundamental properties of nucleon, mainly its time deformation in relativistic bound system.