Analogy of Mass, Heat and Momentum Transport...Momentum Heat Mass πœπ‘§π‘₯=βˆ’(πœ‡ + ) ( π‘₯)...

Post on 28-Jan-2021

17 views 0 download

Transcript of Analogy of Mass, Heat and Momentum Transport...Momentum Heat Mass πœπ‘§π‘₯=βˆ’(πœ‡ + ) ( π‘₯)...

  • Analogy of Mass, Heat and Momentum Transport

    General molecular transport equations

    πœ“π‘§ = βˆ’π›Ώπ‘‘Ξ“

    𝑑𝑧

    Momentum Heat Mass

    πœπ‘§π‘₯ = βˆ’ (πœ‡

    𝜌)

    𝑑(πœŒπ‘£π‘₯)

    𝑑𝑧

    π‘žπ‘§π΄

    = βˆ’π›Όπ‘‘(πœŒπΆπ‘ƒπ‘‡)

    𝑑𝑧 𝐽𝐴𝑧

    ⋆ = βˆ’π·π΄π΅π‘‘(𝑐𝐴)

    𝑑𝑧

    Turbulent diffusion equation

    Momentum Heat Mass

    πœπ‘§π‘₯ = βˆ’ (πœ‡

    𝜌+ πœ€π‘‘)

    𝑑(πœŒπ‘£π‘₯)

    𝑑𝑧

    π‘žπ‘§π΄

    = βˆ’(𝛼 + 𝛼𝑑)𝑑(πœŒπΆπ‘ƒπ‘‡)

    𝑑𝑧

    𝐽𝐴𝑧⋆

    = βˆ’(𝐷𝐴𝐡 + πœ€π‘€)𝑑(𝑐𝐴)

    𝑑𝑧

  • Diffusion

    Diffusion results from random motions of two types: the random motion of

    molecules in a fluid, and the random eddies which arise in turbulent flow.

    Diffusion from the random molecular motion is termed molecular diffusion;

    diffusion which results from turbulent eddies is called turbulent diffusion or

    eddy diffusion.

    Why diffusion occurs?

    Initially, there are solute molecules (A) on the left side of a barrier and

    none on the right. The barrier is removed, and the solute (A) diffuses into B

    to fill the whole container.

    Diffusion of molecules is due to concentration gradient.

    Momentum

    diffusivity (

    πœ‡

    𝜌) (

    π‘š2

    𝑠)

    Thermal diffusivity 𝛼 (π‘š2

    𝑠)

    Molecular diffusivity 𝐷𝐴𝐡 (π‘š2

    𝑠)

  • Molecular diffusivity depends on pressure, temperature, and composition of the system.

    Diffusivities of gases at low density are almost composition independent, increase with the temperature and vary inversely with

    pressure (Table 6.2-1 CJG).

    Liquid and solid diffusivities are strongly concentration dependent and increase with temperature.

    General range of diffusivities:

    Gases: 5 Γ— 10 –6 – 1 Γ— 10-5 m2 / s

    Liquids: 10 –6 – 10-9 m2 / s

    Solids: 5 Γ— 10 –14 – 1 Γ— 10-10 m2 / s

    In the absence of experimental data, semi-theoretical expressions have been

    developed which give approximate values of molecular diffusivities.

    Turbulent (eddy) momentum diffusivity πœ€π‘‘ (π‘š2

    𝑠)

    Turbulent (eddy) thermal diffusivity 𝛼𝑑 (π‘š2

    𝑠)

    Turbulent (eddy) mas diffusivity πœ€π‘€ (π‘š2

    𝑠)

  • Fick’s Law for Molecular Diffusion

    𝐽𝐴𝑧⋆ = βˆ’π‘π·π΄π΅

    𝑑(π‘₯𝐴)

    𝑑𝑧

    where c is the total concentration of A and B in (kg mol A + B)/m3, and π‘₯𝐴 is the mole fraction of A in the mixture A and B.

    For constant concentration (c),

    𝑐𝐴 = 𝑐π‘₯𝐴

    𝑑𝑐𝐴 = 𝑑(𝑐π‘₯𝐴) = 𝑐𝑑(π‘₯𝐴)

    𝐽𝐴𝑧⋆ = βˆ’π·π΄π΅

    𝑑(𝑐𝐴)

    𝑑𝑧

    For constant molar flux, the above equation can be integrated as follows to

    give,

    𝐽𝐴𝑧⋆ ∫ 𝑑𝑧

    𝑧2

    𝑧1

    = βˆ’π·π΄π΅ ∫ 𝑑(𝑐𝐴)𝑐𝐴2

    𝑐𝐴1

    𝐽𝐴𝑧⋆ = βˆ’

    𝐷𝐴𝐡(𝑐𝐴1 βˆ’ 𝑐𝐴2)

    (𝑧1 βˆ’ 𝑧2)

    Since the concentration is related to partial pressure,

    𝑐𝐴 =𝑝𝐴𝑅𝑇

    𝐽𝐴𝑧⋆ = βˆ’

    𝐷𝐴𝐡(𝑝𝐴1 βˆ’ 𝑝𝐴2)

    𝑅𝑇(𝑧1 βˆ’ 𝑧2)

    𝐽𝐴𝑧⋆ =

    𝐷𝐴𝐡(𝑧2 βˆ’ 𝑧1)

    1

    𝑅𝑇(𝑝𝐴1 βˆ’ 𝑝𝐴2)

  • 8314

    T 298 K

    P 1.013E+05 Pa

    D_AB1 6.870E-05 m2/s

    p_A1 6.080E+04 Pa

    p_A2 2.027E+04 Pa

    dZ 0.2 m

    J_AZ1 5.6192E-06 (kg mol A)/(s.m2)

    T_1 298 K

    D_AB1 6.87E-05 Pa

    T_2 398 K

    D_AB2 1.14E-04 Pa

    T 398 K

    P 1.013E+05 Pa

    D_AB2 1.140E-04 m2/s

    p_A1 6.080E+04 Pa

    p_A2 2.027E+04 Pa

    dZ 0.2 m

    J_AZ2 6.9812E-06 (kg mol A)/(s.m2)

    Change 24.2 %

    Gas constants: R_

    Example 6.1-1: Molecular diffusion of Helium in Nitrogen

    (m3.Pa)/(kg mol . K)

    Helium-N2 @ 298 K

    Helium-N2 @ 398 K

    Diffusivity Helium-N2 @ 398 K

  • Molecular Diffusion in Gases

    Equi-molar Counter Diffusion in Gasses

    Consider diffusion that occurs in a tube connecting two tanks containing a

    binary gas mixture of species A and B. If both tanks as well as the connecting

    tube are at a uniform pressure and temperature, the total molar concentration

    would be uniform throughout the tanks and the connecting tube. If π‘₯𝐴1 , the mole fraction of A in tank 1, is larger than π‘₯𝐴2 , the mole fraction of A in tank 2, A would diffuse from tank 1 to tank 2 through the connecting tube,

    while B would diffuse from tank 2 to tank 1 through the same connecting

    tube.

  • Because the temperature and pressure are uniform, the molar flux of

    A from tank 1 to tank 2 through the connecting tube must be the

    same as the molar flux of B from tank 2 to tank 1.

    𝐽𝐴𝑧⋆ = βˆ’π½π΅π‘§

    ⋆

    [βˆ’π·π΄π΅π‘‘(𝑐𝐴)

    𝑑𝑧] = βˆ’ [βˆ’π·π΅π΄

    𝑑(𝑐𝐡)

    𝑑𝑧]

    Since, 𝑃 = 𝑝𝐴 + 𝑝𝐡 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘, therefore,

    𝑐 = 𝑐𝐴 + 𝑐𝐡 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘.

    Differentiating

    0 = 𝑑𝑐𝐴 + 𝑑𝑐𝐡

    Substituting 𝑑𝑐𝐡 = βˆ’π‘‘π‘π΄ gives,

    [βˆ’π·π΄π΅π‘‘(𝑐𝐴)

    𝑑𝑧] = βˆ’ [βˆ’π·π΅π΄

    𝑑(𝑐𝐡)

    𝑑𝑧] = βˆ’ [βˆ’π·π΅π΄ (βˆ’

    𝑑(𝑐𝐴)

    𝑑𝑧)] = [βˆ’π·π΅π΄

    𝑑(𝑐𝐴)

    𝑑𝑧]

    [βˆ’π·π΄π΅π‘‘(𝑐𝐴)

    𝑑𝑧] = [βˆ’π·π΅π΄

    𝑑(𝑐𝐴)

    𝑑𝑧]

    𝐷𝐴𝐡 = 𝐷𝐡𝐴

    Conclusion For a binary gas mixture of A and B. the diffusion coefficient

    for A diffusing in B is same as gas B diffusing in A.

    Molecular diffusivity is independent of concentration.

  • T 298 K

    P 1.01E+05 Pa

    D_AB1 2.30E-05 m2/s

    p_A1 1.01E+04 Pa

    p_A2 5.07E+03 Pa

    dZ 0.1 m

    J_AZ 4.6973E-07 (kg mol A)/(s.m2)

    T 298 K

    P 1.01E+05 Pa

    D_AB1 2.30E-05 m2/s

    p_B1 9.12E+04 Pa

    p_B2 9.63E+04 Pa

    dZ 0.1 m

    J_BZ -4.697E-07 (kg mol A)/(s.m2)

    Example 6.2-1: Equimolar Counter Diffusion

  • Diffusion of Gases A and B with Convective Flow

    Diffusion velocity (m/s) of A = 𝑣𝐴𝑑

    Therefore, molar diffusion flux,

    𝐽𝐴𝑧⋆

    π‘˜π‘” π‘šπ‘œπ‘™ 𝐴

    𝑠 βˆ™ π‘š2= 𝑐𝐴𝑣𝐴𝑑

    π‘˜π‘” π‘šπ‘œπ‘™ 𝐴

    π‘š3π‘š

    𝑠

    The velocity of A relative to the stationary point is the sum of the diffusion velocity

    (𝑣𝐴𝑑) and the average velocity (𝑣𝑀 , molar average velocity of the whole fluid relative to a stationary point). Mathematically,

    𝑣𝐴 = 𝑣𝐴𝑑 + 𝑣𝑀

    𝑐𝐴𝑣𝐴 = 𝑐𝐴𝑣𝐴𝑑 + 𝑐𝐴𝑣𝑀

    Total convective flux of the whole stream relative to the stationary point:

    𝑐𝑣𝑀 = 𝑁 = 𝑁𝐴 + 𝑁𝐡; 𝑣𝑀 =𝑁𝐴 + 𝑁𝐡

    𝑐

    Therefore,

    𝑁𝐴 = βˆ’π‘π·π΄π΅π‘‘(π‘₯𝐴)

    𝑑𝑧+

    𝑐𝐴𝑐

    (𝑁𝐴 + 𝑁𝐡)

    𝑁𝐡 = βˆ’π‘π·π΅π΄π‘‘(π‘₯𝐡)

    𝑑𝑧+

    𝑐𝐡𝑐

    (𝑁𝐴 + 𝑁𝐡)

    Total flux of A relative to stationary point

    𝑐𝐴𝑣𝐴(= 𝑁𝐴)

    Diffusion flux relative to moving fluid

    𝑐𝐴𝑣𝐴𝑑(=, 𝐽𝐴𝑧⋆ )

    Convective flux of A relative to stationary

    point 𝑐𝐴𝑣𝑀 = +

    Total flux of

    A, 𝑁𝐴 Diffusion flux, 𝐽𝐴𝑧

    ⋆

    Convective flux of A,

    𝑐𝐴 (𝑁𝐴 + 𝑁𝐡

    𝑐)

    = +

  • Special Case for A Diffusing through Stagnant Film of B

    Example 1: The benzene vapor (A) diffuses through the air (B) in the tube. The air is

    insoluble in benzene liquid, there is no movement in air (𝑁𝐡 = 0).

    Example 2: The ammonia vapor (A) diffuses through the air (B) in the tube and gets

    absorbed in water. The air is slightly soluble in water, there is no

    movement in air (𝑁𝐡 = 0).

    Therefore,

    𝑁𝐴 = βˆ’π‘π·π΄π΅π‘‘(π‘₯𝐴)

    𝑑𝑧+

    𝑐𝐴𝑐

    (𝑁𝐴 + 0)

    Since,

    𝑐 =𝑃

    𝑅𝑇; 𝑝𝐴 = π‘₯𝐴𝑃;

    𝑐𝐴𝑐

    =𝑝𝐴𝑃

    Therefore, for constant pressure

    𝑁𝐴 = βˆ’π·π΄π΅π‘…π‘‡

    𝑑(𝑝𝐴)

    𝑑𝑧+

    𝑝𝐴𝑃

    𝑁𝐴

    𝑁𝐴 (1 βˆ’π‘π΄π‘ƒ

    ) = βˆ’π·π΄π΅π‘…π‘‡

    𝑑(𝑝𝐴)

    𝑑𝑧

  • 𝑡𝑨 = βˆ’π‘«π‘¨π‘©π‘·

    𝑹𝑻

    𝟏

    (𝑷 βˆ’ 𝒑𝑨)

    𝒅(𝒑𝑨)

    𝒅𝒛

    𝑁𝐴 ∫ 𝑑𝑧𝑍2

    𝑍1

    = βˆ’π·π΄π΅π‘ƒ

    π‘…π‘‡βˆ«

    𝑑𝑝𝐴(𝑃 βˆ’ 𝑝𝐴)

    𝑝𝐴2

    𝑝𝐴1

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇ln

    𝑃 βˆ’ 𝑝𝐴2𝑃 βˆ’ 𝑝𝐴1

    Since, the total pressure is the sum of partial pressures, i.e., 𝑃 = 𝑝𝐴1 + 𝑝𝐡1 = 𝑝𝐴2 +𝑝𝐡2

    Therefore,

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇𝑙𝑛

    𝑝𝐡2𝑝𝐡1

    But,

    𝑝𝐡𝑀 =𝑝𝐡2 βˆ’ 𝑝𝐡1

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑝𝐡𝑀

    Therefore,

    𝑡𝑨 =𝑫𝑨𝑩

    (π’›πŸ βˆ’ π’›πŸ)

    𝑷

    𝑹𝑻

    π’‘π‘¨πŸ βˆ’ π’‘π‘¨πŸπ’‘π‘©π‘΄

  • 𝑡𝑨 =𝑫𝑨𝑩

    (π’›πŸ βˆ’ π’›πŸ)

    𝟏

    𝑹𝑻

    𝑷

    𝒑𝑩𝑴(π’‘π‘¨πŸ βˆ’ π’‘π‘¨πŸ)

    𝑱𝑨𝒛⋆ =

    𝑫𝑨𝑩(π’›πŸ βˆ’ π’›πŸ)

    𝟏

    𝑹𝑻(π’‘π‘¨πŸ βˆ’ π’‘π‘¨πŸ)

  • EXAMPLE 6.2-2: Diffusion of Water Through Stagnant,

    Non-diffusing Air

    Water in the bottom of a narrow metal tube is held at a constant temperature of 293 K. The total pressure of air (assumed dry) is 1.01325 Γ— 105 Pa (1.0 atm) and the temperature is 293 K (20Β°C). Water evaporates and diffuses through the air in the tube and the diffusion path (𝑧2 βˆ’ 𝑧1) is 0.1524 m long. The diagram is similar to Fig. 6.2-2a. Calculate the rate of evaporation at steady state. The diffusivity of water vapor at 293 K and 1 atm pressure is 0.250Γ—10-4 m2/s. Assume that the system is isothermal.

    Solution:

    𝑝𝐴1 = 2.341 Γ— 103 Pa (Vapor pressure of water at 20Β°C from Appendix A.2)

    𝑝𝐴2 = 0 (Assuming dry air, i.e. no water vapor)

    𝑝𝐡1 = P – pAl = 1.01325 Γ— 105 – 2.341 Γ— 103 = 98984

    𝑝𝐡2 = P – pA2 = 1.01325 Γ— 105 – 0 = 1.01325 Γ— 105 Pa

    𝑝𝐡𝑀 =𝑝𝐡2 βˆ’ 𝑝𝐡1

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    = 100149.4 π‘ƒπ‘Ž

    When,

    𝑝𝐡1 β‰ˆ 𝑝𝐡2; 𝑝𝐡𝑀 ≅𝑝𝐡1 + 𝑝𝐡2

    2= 100154.5 π‘ƒπ‘Ž

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    =0.25 Γ— 10βˆ’4

    0.1524

    1.01325 Γ— 105

    8314 Γ— 293

    (2.341 Γ— 103 βˆ’ 0)

    100149.4= 1.595 Γ— 10βˆ’7

    π‘˜π‘” π‘šπ‘œπ‘™

    π‘š2 βˆ™ 𝑠

  • Question: Water at 20Β°C is flowing in a covered irrigation ditch below ground. There is a vent line 30 mm inside diameter and 1.0 m long to the outside atmosphere at 20Β°C. The percent relative humidity in Riyadh under present weather conditions is about 10%. As a result, the partial pressure of the water vapor in the outside air can be taken as 234 Pa. Determine the molar flux of water vapor in (π‘˜π‘” π‘šπ‘œπ‘™ π‘š2 βˆ™ 𝑠⁄ )

    (Data: Use the diffusivity data from Table 6.2-1. You may need to change its value to the required temperature if needed. Vapor pressure of water vapor at 20Β°C = 2340 Pa)

    Solution:

    𝑇 = 293 𝐾; 𝑃 = 1.01325 Γ— 105 π‘ƒπ‘Ž; 𝐷𝐴𝐡= 2.6 Γ— 10βˆ’5 π‘š2 𝑠⁄ @298 𝐾;

    𝐷𝐴𝐡2𝐷𝐴𝐡1

    = (𝑇2𝑇1

    )1.75

    ; 𝐷𝐴𝐡2 = 2.6 Γ— 10βˆ’5 (

    293

    298)

    1.75

    = 𝟐. πŸ“πŸ Γ— πŸπŸŽβˆ’πŸ“ π’ŽπŸ 𝒔⁄

    𝑝𝐴1 = 2340 Pa (Vapor pressure of water vapor at 20Β°C) 𝑝𝐴2 = 234 (10% Relative Humidity) 𝑝𝐡1 = P – 𝑝𝐴1 = 101.325 Γ— 10

    3 – 2.34 Γ— 103 = 98,985 Pa 𝑝𝐡2 = P – 𝑝𝐴2 = 101325 – 234 = 101,091 Pa

    𝑝𝐡𝑀 =𝑝𝐡2 βˆ’ 𝑝𝐡1

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    = 100,034 π‘ƒπ‘Ž

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    =2.52 Γ— 10βˆ’5

    1.0

    1.01325 Γ— 105

    8314 Γ— 293

    (2340 βˆ’ 234)

    100,034

    = 𝟐. 𝟐𝟏 Γ— πŸπŸŽβˆ’πŸ–π’Œπ’ˆ π’Žπ’π’

    π’ŽπŸ βˆ™ 𝒔

  • Question 1 (33 pts): Water in the bottom of a narrow metal tube is held at a temperature of 303 K. The total pressure of air (assumed dry) is 1.01325 x 105 Pa (1.0 atm) and the temperature is 303 K. Water evaporates and diffuses through the air in the tube and the diffusion path (z2 - z1) is 0.2 m long. The tube diameter is 10 mm. The diagram is similar to Fig. 6.2-2a. The vapor pressure of water vapors at 303 K is 4242 Pa. The experimental value of the diffusion coefficient at 298 K is 2.6Γ—10-5 m2/s.

    I. Determine the molecular diffusion coefficient at 303 K.

    𝐷𝐴𝐡2𝐷𝐴𝐡1

    = (𝑇2𝑇1

    )1.75

    ; 𝐷𝐴𝐡2 = 2.6 Γ— 10βˆ’5 (

    303

    298)

    1.75

    = 𝟐. πŸ”πŸ– Γ— πŸπŸŽβˆ’πŸ“ π’ŽπŸ 𝒔⁄

    7

    II. Determine pBM in Pa.

    𝑝𝐡𝑀 =𝑝𝐡2 βˆ’ 𝑝𝐡1

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑙𝑛𝑝𝐡2𝑝𝐡1

    =4242 βˆ’ 0

    𝑙𝑛101325 βˆ’ 0

    101325 βˆ’ 4242

    = πŸ—πŸ—, πŸπŸ–πŸ—π‘·π’‚

    5

    III. Calculate the rate of evaporation (NA) at steady state in π‘˜π‘” π‘šπ‘œπ‘™ π‘š2 βˆ™ 𝑠⁄ and π‘˜π‘” π‘š2 βˆ™ 𝑠⁄

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    =2.68 Γ— 10βˆ’5

    0.2

    1.01325 Γ— 105

    8314 Γ— 303

    (4242 βˆ’ 0)

    99,189= 𝟐. πŸ‘ Γ— πŸπŸŽβˆ’πŸ•

    π’Œπ’ˆ π’Žπ’π’

    π’ŽπŸ βˆ™ 𝒔

    = πŸ’πŸ. πŸ’ Γ— πŸπŸŽβˆ’πŸ•π’Œπ’ˆ

    π’ŽπŸ βˆ™ 𝒔

    13

    IV. Calculate the steady state rate of evaporation (NA) if the air is humid (not dry) and the percentage relative humidity, i.e. 100(𝑝𝐴 𝑝𝐴

    π‘œβ„ ) = 30%, where 𝑝𝐴 is the partial pressure of the water vapor in the air and 𝑝𝐴

    π‘œ is the vapor pressure.

    𝑝𝐴2 =30

    100𝑝𝐴

    π‘œ = 0.3 Γ— 4242 = 1273π‘ƒπ‘Ž

    𝑝𝐡𝑀 =4242 βˆ’ 1273

    𝑙𝑛101325 βˆ’ 1273101325 βˆ’ 4242

    = 98,560 π‘ƒπ‘Ž

    𝑁𝐴 =𝐷𝐴𝐡

    (𝑧2 βˆ’ 𝑧1)

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    =2.68 Γ— 10βˆ’5

    0.2

    1.01325 Γ— 105

    8314 Γ— 303

    (4242 βˆ’ 1273)

    98,560= 𝟏. πŸ”πŸ Γ— πŸπŸŽβˆ’πŸ•

    π’Œπ’ˆ π’Žπ’π’

    π’ŽπŸ βˆ™ 𝒔

    Note: There is almost 30% decrease in the flux due to a 30% decrease in driving force since the change in the 𝑝𝐡𝑀 is negligible.

    8

  • Interface Fall for A Diffusing through Stagnant Film of B

    The initial and final heights are

    𝑧0, 𝑧𝐹 respectively.

    If the level drops dz m in dt s, and

    the total rate of diffusion due to

    evaporation (in kg mol per s) will be

    𝑁𝐴 = 𝑁𝐴 Γ— π΄π‘Ÿπ‘’π‘Ž

    𝑁𝐴 Γ— π΄π‘Ÿπ‘’π‘Ž

    =πœŒπ΄π‘€π΄

    𝑑𝑧

    𝑑𝑑× π΄π‘Ÿπ‘’π‘Ž

    𝐷𝐴𝐡𝑧

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    =πœŒπ΄π‘€π΄

    𝑑𝑧

    𝑑𝑑

    𝐷𝐴𝐡𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    ∫ 𝑑𝑑 =𝑑𝐹

    0

    πœŒπ΄π‘€π΄

    ∫ 𝑧𝑑𝑧𝑧𝐹

    𝑧0

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (𝑧𝐹2βˆ’π‘§0

    2)

    2𝐷𝐴𝐡(

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    )βˆ’πŸ

    The above equation can be used to experimentally determine the molecular diffusivity

    𝐷𝐴𝐡.

    (𝑧𝐹2βˆ’π‘§0

    2) = (𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    ) (π‘€π΄πœŒπ΄

    ) (2𝐷𝐴𝐡)𝑑𝐹

  • Diffusion through a Varying Cross-Sectional Area

    Case (A): Diffusion from a sphere:

    Example:

    Evaporation of a drop of liquid

    Evaporation of a ball of

    naphthalene

    Diffusion of nutrients from a

    spherical micro-organism

    Consider a sphere of A of radius π‘Ÿ1 in an

    infinite medium of gas B. Component A at partial pressure 𝑝𝐴1 at the surface is

    diffusing in the surrounding stagnant medium (B), where 𝑝𝐴2 = 0 at large distance away.

    If the area changes, the flux (π‘π΄π‘˜π‘” π‘šπ‘œπ‘™

    π‘š2𝑠) will also change, but (𝑁𝐴

    π‘˜π‘” π‘šπ‘œπ‘™

    𝑠) will remain

    constant. For spherical geometry,

    𝑁𝐴 =𝑁𝐴

    4πœ‹π‘Ÿ2== βˆ’π·π΄π΅

    𝑃

    𝑅𝑇

    1

    (𝑃 βˆ’ 𝑝𝐴)

    π‘‘π‘π΄π‘‘π‘Ÿ

    𝑁𝐴4πœ‹

    βˆ«π‘‘π‘Ÿ

    π‘Ÿ2

    π‘Ÿ2

    π‘Ÿ1

    = βˆ’π·π΄π΅π‘ƒ

    π‘…π‘‡βˆ«

    1

    (𝑃 βˆ’ 𝑝𝐴)𝑑𝑝𝐴

    𝑝𝐴2

    𝑝𝐴1

    𝑁𝐴4πœ‹

    (1

    π‘Ÿ1βˆ’

    1

    π‘Ÿ2) = 𝐷𝐴𝐡

    𝑃

    𝑅𝑇ln

    𝑃 βˆ’ 𝑝𝐴2𝑃 βˆ’ 𝑝𝐴1

    For π‘Ÿ2 ≫ π‘Ÿ1, 1 π‘Ÿ2 β‰… 0⁄ , gives

    𝑁𝐴4πœ‹π‘Ÿ1

    = 𝐷𝐴𝐡𝑃

    𝑅𝑇ln

    𝑃 βˆ’ 𝑝𝐴2𝑃 βˆ’ 𝑝𝐴1

    𝑁𝐴 =𝑁𝐴

    4πœ‹π‘Ÿ12 =

    π·π΄π΅π‘Ÿ1

    𝑃

    𝑅𝑇[ln

    𝑃 βˆ’ 𝑝𝐴2𝑃 βˆ’ 𝑝𝐴1

    ] =π·π΄π΅π‘Ÿ1

    𝑃

    𝑅𝑇[𝑝𝐴1 βˆ’ 𝑝𝐴2

    𝑝𝐡𝑀]

  • For 𝑝𝐴1 β‰ͺ 𝑃 β‡’ 𝑝𝐡𝑀 β‰… 𝑃 . Therefore,

    𝑁𝐴 =π·π΄π΅π‘Ÿ1

    1

    𝑅𝑇(𝑝𝐴1 βˆ’ 𝑝𝐴2)

    Since 𝑐 = 𝑃 𝑅𝑇⁄ for liquids

    𝑁𝐴 =π·π΄π΅π‘Ÿ1

    (𝑐𝐴1 βˆ’ 𝑐𝐴2)

    For a tube of constant cross-sectional area, the total time of evaporation for the change

    in level from 𝑧0 to 𝑧𝐹:

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (𝑧𝐹2βˆ’π‘§0

    2)

    2𝐷𝐴𝐡(

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    )βˆ’πŸ

    For a sphere, for the complete evaporation of initial radius π‘Ÿ1:

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ12)

    2𝐷𝐴𝐡(

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    )βˆ’πŸ

  • Time to Completely Evaporate a Sphere

    A drop of liquid toluene is kept at a uniform temperature of 25.9 Β°C and is suspended

    in air by a fine wire. The initial radius π‘Ÿ0 = 2π‘šπ‘š. The vapor pressure of toluence at

    25.9 Β°C is 𝑝𝐴1 = 3.84 π‘˜π‘ƒπ‘Ž and the density of liquid toluene is 866 kg/m3. Calculate the

    time in seconds for complete evaporation, i.e. π‘ŸπΉ = 0 π‘šπ‘š.

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡(

    𝑃

    𝑅𝑇

    𝑝𝐴1 βˆ’ 𝑝𝐴2𝑝𝐡𝑀

    )βˆ’πŸ

    =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡

    𝑅𝑇

    𝑃

    𝑝𝐡𝑀𝑝𝐴1 βˆ’ 𝑝𝐴2

  • Question 2 (33 pts):

    Water drop (spherical) is suspended in still air (assumed dry) by a fine wire

    at 303K at 1.01325 x 105 Pa (1.0 atm). Its initial radius was r0 = 4 mm. The

    vapor pressure of water at 303 K is 𝑝𝐴0 = 4242 π‘ƒπ‘Ž and the density of water

    is 995.71 kg/m3. Note that

    Conditions in this problem are same as in Question 1

    π΄π‘Ÿπ‘’π‘Ž, 𝐴 = 4πœ‹π‘Ÿ2; π‘‰π‘œπ‘™π‘’π‘šπ‘’, 𝑉 = (4 3⁄ )πœ‹π‘Ÿ3; π‘€π‘Žπ‘ π‘  = πœŒπ‘‰

    The time of evaporation can be computed using,

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡

    𝑅𝑇

    𝑃

    𝑝𝐡𝑀𝑝𝐴1 βˆ’ 𝑝𝐴2

    I. Calculate the time in seconds for its complete evaporation (rF = 0 mm).

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡

    𝑅𝑇

    𝑃

    𝑝𝐡𝑀𝑝𝐴1 βˆ’ 𝑝𝐴2

    =995.71

    18

    (0.0042 βˆ’ 0)

    2 βˆ™ 2.68 Γ— 10βˆ’58314 Γ— 303

    101325

    99,189

    4242 βˆ’ 0= πŸ—πŸ“πŸ—πŸ— 𝒔

    12

    II. Calculate the time in second required for the evaporation of half of the total initial mass

    of the water drop

    π‘€π‘Žπ‘ π‘ Fπ‘€π‘Žπ‘ π‘ i

    =π‘‰π‘œπ‘™π‘’π‘šπ‘’Fπ‘‰π‘œπ‘™π‘’π‘šπ‘’i

    =π‘ŸF

    3

    π‘Ÿi3 = 0.5; π‘ŸF

    3 = 0.5π‘Ÿi3; π‘ŸπΉ = 3.175 π‘šπ‘š

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡

    𝑅𝑇

    𝑃

    𝑝𝐡𝑀𝑝𝐴1 βˆ’ 𝑝𝐴2

    =995.71

    18

    (0.0042 βˆ’ 0.0031752 )

    2 βˆ™ 2.68 Γ— 10βˆ’58314 Γ— 303

    101325

    99,189

    4242 βˆ’ 0

    = πŸ‘πŸ“πŸ“πŸ 𝒔

    10

    III. How much time in seconds will be required for its complete evaporation (rF = 0 mm) if

    initial radius was r0 = 2 mm. (Detailed calculations not required).

    Since 𝑑𝐹 ∝ π‘Ÿ02 decreasing the initial radius by (1/2) will cause a (1/4) in the time of evaporation,

    i.e. (9599/4) = 2400 s.

    5

    IV. Calculate the time in seconds for its complete evaporation when P = 0.1 atm = 1.01325 x

    104 Pa

    𝑑𝐹 =πœŒπ΄π‘€π΄

    (π‘Ÿ02 βˆ’ π‘ŸπΉ

    2)

    2𝐷𝐴𝐡

    𝑅𝑇

    𝑃

    𝑝𝐡𝑀𝑝𝐴1 βˆ’ 𝑝𝐴2

    =995.71

    18

    (0.0042 βˆ’ 0 )

    2 βˆ™ 26.8 Γ— 10βˆ’58314 Γ— 303

    10132.5

    πŸ•, πŸ–πŸπŸ

    4242 βˆ’ 0= πŸ•πŸ“πŸ•π’”

    Note: (𝐷𝐴𝐡𝑃)is independent of pressure, but (𝑝𝐡𝑀) will change.

    6

  • Case (B): Diffusion through a tapered conduit:

    The radius at any location is related to length as

    π‘Ÿ = (π‘Ÿ2 βˆ’ π‘Ÿ1𝑧2 βˆ’ 𝑧1

    ) 𝑧 + π‘Ÿ1

    and area

    𝐴 = πœ‹π‘Ÿ2 = πœ‹ [(π‘Ÿ2 βˆ’ π‘Ÿ1𝑧2 βˆ’ 𝑧1

    ) 𝑧 + π‘Ÿ1]2

    Therefore,

    𝑁𝐴 =𝑁𝐴

    πœ‹π‘Ÿ2== βˆ’π·π΄π΅

    𝑃

    𝑅𝑇

    1

    (𝑃 βˆ’ 𝑝𝐴)

    π‘‘π‘π΄π‘‘π‘Ÿ

    𝑁𝐴 =π‘π΄πœ‹

    βˆ«π‘‘π‘§

    [(π‘Ÿ2 βˆ’ π‘Ÿ1𝑧2 βˆ’ 𝑧1

    ) 𝑧 + π‘Ÿ1]2

    π‘Ÿ2

    π‘Ÿ1

    = βˆ’π·π΄π΅π‘ƒ

    π‘…π‘‡βˆ«

    1

    (𝑃 βˆ’ 𝑝𝐴)𝑑𝑝𝐴

    𝑝𝐴2

    𝑝𝐴1

  • Diffusion Coefficients for Gases

    Experimental determination of diffusion coefficients

    Evaporation of pure liquid in a narrow tube with a gas passed over the top

    Evaporation of a sphere for vapors of solids such as naphthalene, iodine, and

    benzoic acid in a gas

    Two-bulb method, where sampling for 𝑐2(𝑑) with the help of following relations

    can be used to obtain diffusion coefficient

    π‘π‘Žπ‘£ βˆ’ 𝑐2

    π‘π‘Žπ‘£ βˆ’ 𝑐20 = exp [βˆ’

    𝐷𝐴𝐡(𝑉1 + 𝑉2)

    (𝐿 𝐴⁄ )(𝑉2𝑉1)𝑑]

    where,

    𝑐1 + 𝑐2 = 𝑐10 + 𝑐2

    0

    π‘π‘Žπ‘£ =𝑉1𝑐1

    0 + 𝑉2𝑐20

    𝑉1 + 𝑉2

  • Experimental Diffusion Coefficients of Gases at P = 1 atm (CJG: Table 6.2-1)

  • Prediction of diffusion coefficients

    For a binary pair of gases, the Chapman–Enskog correlation can be used (Eq. 6.2-44 in

    C. J. Geankoplis):

    𝐷𝐴𝐡 = 1.8583 Γ— 10βˆ’7

    𝜎𝐴𝐡2 Ω𝐷,𝐴𝐡

    (𝑇3 2⁄

    𝑃) (

    1

    𝑀𝐴+

    1

    𝑀𝐡)

    1 2⁄

    where, A and B are two kinds of molecules present in the gaseous mixture, 𝐷𝐴𝐡is the

    diffusivity (m2/s), T is the absolute temperature (K), M is the molar mass (kg/ kg mol),

    P is the pressure (atm), and 𝜎 is the β€˜average collision diameter’, Ξ© is a temperature-

    dependent collision integral. Prediction accuracy of the above equation is about 8% up

    to about 1000 K.

    Another simpler correlation that can be used is (Eq. 6.2-45 in C. J. Geankoplis):

    𝐷𝐴𝐡 = 1.0 Γ— 10βˆ’7

    [(βˆ‘ 𝑣𝐴)1 3⁄ + (βˆ‘ 𝑣𝐡)

    1 3⁄ ]2(

    𝑇3.5 2⁄

    𝑃) (

    1

    𝑀𝐴+

    1

    𝑀𝐡)

    1 2⁄

    where βˆ‘ 𝑣𝐴=sum of structural volume increments (Table 6.2-2, CJG).

    It is clear from the above equation that temperature and pressure dependence of the

    gas diffusivity is given by:

    𝐷𝐴𝐡 ∝ (𝑇3.5 2⁄

    𝑃)

    𝐷𝐴𝐡2𝐷𝐴𝐡1

    = (𝑇2𝑇1

    )1.75

    𝐷𝐴𝐡2𝐷𝐴𝐡1

    = (𝑃1𝑃2

    )

  • Prediction accuracy of Fuller et al. Equation

  • Schmidt number for gases

    𝑁𝑆𝑐 = πœ‡ πœŒβ„

    𝐷𝐴𝐡=

    π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š 𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑣𝑖𝑑𝑦

    π‘šπ‘Žπ‘ π‘  𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑣𝑖𝑑𝑦

    For gases, 𝑁𝑆𝑐 = 0.5– 2.0

    For liquid, , 𝑁𝑆𝑐 = 100– 10,000