AFMG - cvut.cz

Post on 18-Dec-2021

24 views 0 download

Transcript of AFMG - cvut.cz

AFMG AHNERT FEISTEL MEDIA GROUP

Brno 19.10.2011

Acoustic Simulation and Sound System Design

Wolfgang Ahnert

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 2

Overview

• Short review of development of acoustic simulation

• Software EASE

• Speaker, wall and other data

• Extension to lower frequencies

• Intelligibility calculation

• Measurement tools

www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 3

Development in Designing

Paths to sure planing: • Roman/ Greek time/ middle age: knowledge based on experiance and

first trial and error reports, i.e. rom. architect Vitruv • since 18. century: investigations, i.e. Chladni or at 1875 Lord Rayleigh,

Prof. Helmholtz • since 1900: roomacoustic basics, Prof. Sabine • by 1935: measurement in models and „Auralisation“ in physical

models, Prof. Spandöck München, Prof. Reichardt Dresden • since 1965: computer model investigations, Prof. Krokstad Trondheim,

afterwards a lot of similar works • since 1995: Auralisation by means of computer models is available

generally

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 4

1988, CATT-Acoustic, by Dalenbeck/Sweden

Version 1, now version 8.6

1991, ODEON, by Naylor&Rindel/Denmark

Version 1, now version 10.0

1994, RAMSETE, Faria/Italy,

Version 1, now version 2.xx

1998/2001, CAESAR, 1998 by Vorländer/Schmitz/Aachen/Germany

Version 0.12, 2001 vers. 0.20

2001, EASE, by Ahnert/Feistel/Berlin/Germany

Version 4.0, Autumn 2009 EASE 4.3

Room Acoustics Programs

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 5

EASE 4.3. ….5.0

Modules for Editing and Calculation

SpeakerLab

MaterialLab MicrophoneLab

InterfaceLab

Block diagram

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 6

SpeakerLab

GLL for different speaker types Point sources Arrays Cluster

GLL for natural sources Human sources Music instruments

Import and export routines

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 7

1000 Hz

Point Source presentation

Magnitude and Phase balloon

wrapped

unwrapped

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 8

5000 Hz

Point Source presentation

Magnitude and Phase balloon unwrapped

wrapped

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 9

Loudspeaker data

Import routine for Wav-files

Identification of the rotation point in data sheets:

Standard AES56-2008

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 10

Loudspeaker data base - Cluster

A Cluster calculation routine is a far field approach

Using the measured or simulated balloon data of a single device you calculate the cluster by means of:

power summation

complex integration

all with different angle and frequency band resolution

View cluster shows the components of the cluster

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 11

Different cluster calculation

Already in EASE 3.0, Only run time phase consideration

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 12

Arrays with In-line Arrangement of Radiators

where n = number of individual loudspeakers d = spacing of the individual loudspeakers = radiation angle = wave length of sound l = (n-1) d = length of the loudspeaker line

Each of the individual loudspeakers radiates the sound spherically and the sound waves get favorably superposed in the far field, whereas the effect of the individual loudspeaker prevails in the near field. For the far field the equation above was given already by STENZEL 1927, 1939 and OLSON 1947 for the angular directivity ratio , the so-called polars.

STENZEL, H.: Über die Richtwirkung von Schallstrahlern, Elektrische Nachrichten-Technik, Band 4 (1927), Seite 239 STENZEL, H.: Leitfaden zur Berechnung von Schallvorgängen, Verlag von Julius Springer, Berlin 1939 OLSON, H.F.: Elements of Acoustical Engineering, D. van Nostrand Company, 2nd edition, New York 1947

Classical columns (Loudspeaker Line, Sound Column)

sinsin

sinsin

dn

dn

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 13

Speaker type Cluster

already in EASE 3.0

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 14

Cluster calculations

1 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 15

Cluster calculations

2 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 16

Cluster calculations

3 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 17

Cluster calculations

4 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 18

Cluster calculations

5 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 19

Cluster calculations

6 speaker

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 20

Arrays with In-line Arrangement of Radiators Many manufactures like L-Acoustics, JBL, Electro-Voice, Nexo, Adamson or Meyer Sound produce line arrays, here as an example Vertec/JBL:

In EASE4.0 it was no longer possible to represent these systems by means of simple point sources with directional irradiation. Thus an algorithm has to be employed that is capable of calculating the attainable sound level according to the array structure as well as the distances and frequencies involved. To this effect there are special product-specific DLLs available that are called up by the respective main program.

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 21

Speaker type Line Array

Renkus-Heinz AimWare

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 22

Speaker type Line Array

EASE Focus

Software

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 23

Iconyx 8

Electronically steerable column loudspeaker by Renkus-Heinz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 24

DURAN Audio Intellivox 2c

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 25

Arrays with In-line Arrangement of Radiators Digitally controlled line arrays

A way of reducing the frequency dependence of the directional characteristics and directivity of sound lines (the figures below illustrate such an unwanted directional effect in three-dimensional representation) consists of supplying the sound signal, with different phases and levels, to the individual loudspeakers in an array.

1000Hz 2000Hz 4000Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 26

DURAN Audio Intellivox 2c

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 27

DURAN Audio Intellivox 2c

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 28

Line Array Simulation

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 29

Line Array Simulation: Direct SPL on faces

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 30

New Data Format

Until now: Point Sources, Cluster Dynamic Loudspeaker Libraries DLL and now: Generic Loudspeaker Library GLL

What„s that?

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 31

Generic Loudspeaker Library GLL

Why GLL – Another loudspeaker data format? History:

EASE 1.x : 15° and 1/1 Octave half sphere data, magnitude only EASE 2.x : 10° and 1/1 Octave half sphere data, magnitude only EASE 3.x : 5° and 1/3 Octave full sphere data, magnitude only EASE 4.0/4.1: 5° and 1/3 Octave full sphere data,

complex data + DLL modeling capabilities

Problem: Fixed data tables, no user configurability Many constraints due to data reduction or interpolation to fit

tabular format Data resolution not adapted to modeling goals

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 32

GLL – Motivation

Typical Problems with Tabular Data: Active or switchable passive multi-way loudspeakers Stack of 2 two-way loudspeakers Column loudspeakers, tapered or digitally steered Touring line arrays Cluster systems

Modeling Requirements: Data resolution > 1/3rd Octave Add coherence information, phase Mechanical configurability (rigging) Electronical configurability (filters) Better integration with manufacturer

control software

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 33

Create a GLL What is needed to create a GLL?

Data for individually controlled transducers must be measured individually

For each point source of the model: IR/FR balloon data in sufficient angular resolution (EASERA, TEF, MLSSA, MF, CLIO, LMS, etc.)

Sensitivity is calculated automatically from calibrated on-axis response

Maximum voltage over the rated bandwidth

Impedance data (optional)

=> Stored as a GSS file

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 34

Create a GLL Generic Sound Source (GSS) Data:

Data is stored in its native format using high-resolution storage and compression algorithms Rather than enforcing data provision in a fixed format, data points required for prediction are interpolated from available data points

– Preferably complex data, error ranges as determined by rotation point and critical frequency

– New definition of power handling

– Flexible import functions

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 35

Create a GLL

What is needed to create a GLL?

Combine sources in a box:

3D location of all transducers / source groups

Define input matrix (external inputs -> acoustic outputs)

Available filters (matrix nodes)

Case drawing

GLL Box Type

Sources

Filter Groups

Input Configurations

HF

LF LF XO

HF XO

Active System

HF

LF LF XO

HF XO

Passive System

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 36

Design and Analysis Tool Design Tool EASE SpeakerLab:

Driver placement and orientation

Crossover design

Filter development for steered columns

Validation of mechanical design

=> Directivity Prediction

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 37

Design and Analysis Tool Analysis Tool EASE SpeakerLab :

For measured data and predicted data

Validation and evaluation over angle and frequency

Variety of graphs: Frequency Response, Balloons, Polars , Beamwidth, Hor./Ver. Mapping, Directivity, etc.

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 38

MicrophoneLab

• GLL for different microphone types • Omnidirectional microphones • Directed Microphones • Arrays

• GLL for natural receivers • Human ears • Dummy head • HRTF database

• Import and export routines

38 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 39

Microphone database

First approach to collect microphone data for EASE

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 40

MaterialLab

• Interface to SoundFlow • Angle-dependent absorption and scattering values • Interface to Reflex • Data Storage in compiled form • Import of text and picture files • Contact information to web sites • Providing import routines for manufactures to

create material data • Import routine for *.mat files

40 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 41

Calculation of the Acoustic Properties of Multi-Layer Walls

Calculation: • Impedance describes the acoustic

properties:

• Z = p0/v0

• Calculation of transmission:

• t = |pN/p0|²

• Boundary conditions for back size:

• Rigid wall: Sound velocity is 0

• Air: Characteristic impedance of air

• Multi-layer structures are calculated layer by layer: (pn,vn)->(pn-1,vn-1)

• Different computational models can be applied to each layer

pN-1

vN-1

p0 p1

v0 v1

pn-1 pn

vn-1 vn

1 2 3

p0 v0

pN vN

Air

vN = 1/ZAir pN = 1

pN = 1 vN = 0

Rigid Wall

41 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 42

Transmission Loss: Simulation vs. Measurement

0

10

20

30

40

50

60

70

80

100 1000 10000

Tra

nsm

issio

n L

oss /

dB

Frequency / Hz

Transmission Loss [dB]Porous Material placed between two plates

Journal of Sound and Vibration (1992) 155(1), 125-132

SoundFlow

LAURICKS et. al.

42 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 43

Absorption Coefficient: Simulation vs. Measurement

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

100 1000 10000

alp

ha

Frequency / Hz

Absorption Coefficient Microperforated Panel

J. Acoust. Soc. Am. 104 (5), Nov. 1998

SoundFlow

Dah-You Maa

43 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 44

Software AFMG SoundFlow

Features:

• Entry of layers and thicknesses

• Definition of „raw materials“

• Calculation of transmission, absorption, reflection

• Result output as report document or pictures

• Direct export to EASE

44 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 45

Future Improvements in SoundFlow

• Improve the model for thick plates

• Add different connection types between layers

• Rigid connection (sandwich plates, laminated)

• Rigid line/point connection (studs, structural bridges)

• Viscous

• Conical holes

• Eigenfrequencies on finite sized walls

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 46

Boundary Element Method

• Solves differential equations on the boundary of a domain

• Useful for solving scattering problems • Can be coupled to FEM to solve semi-open rooms • Advantages:

• Fast & exact for “small” problems • Can be used for open domains

• Disadvantages: • Scales in contract to FEM • Needs fundamental solution

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 47

Calculation of Scattering by a Structured Surface using BEM

Steps: • Structured surface • Tessellation into segments • Incident plane wave • Calculation of sound

pressure at surface • Solving the system of

linear equations • Resulting sound pressure • Calculation of reflected

wave front

pin[0] pin[1] pin[n] …

pout[0] pout[1] pout[n] …

BEM M pout = pin

47 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 48

Quantify scattering

Scattering Coefficient Autocorrelation diffusion coefficient

Normalized diffusion coefficient Correlation Scattering Coefficient Correlation with response of flat panel

S = 0.7

S = 0.15

S = 0

D = 0.85

D = 0.35

flat

flat

nd

ddd

1

total

spec

E

Es 1

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 49

Calculation of Scattering Coefficient

Calculation:

• Comparison with flat panel

• Calculation of spatial distribution using BEM

• Comparison of distributions

• Calculation of correlation function

• -> scattering coefficient

2kHz 2kHz BEM BEM

2kHz

49 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 50

Calculation of Diffusion Coefficient Calculation:

• BEM – Calculation of spatial distribution

• Autocorrelation

• -> diffusion coefficient

• Comparison with flat panel -> normalized diffusion coefficient

• Also smooth surfaces may yield high diffusion coefficients at low frequencies

• Normalization to suppress this edge effect

• Scattering coefficient compares with geometrical reflection only

2kHz BEM 2kHz BEM

Autocorrelation Autocorrelation

100 Hz

800 Hz

100 Hz

800 Hz

100 Hz

800 Hz

100 Hz

800 Hz

100 Hz

800 Hz

50 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 51

Scattering Coefficients: Simulation vs. Measurement

Comparison:

• Measurement according to ISO 17497-1

• Simulation of „Correlation Scattering Coefficient“ according to Mommertz

• Match is quite good, esp. for use in EASE

0

0,5

1

100 1000 10000

Frequency / Hz

Measurement

AFMG Reflex

51 www.AFMG.eu

Measurement in cooperation with RPG Diffusors Inc.

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 52

Scattering Coefficients: Simulation vs. Measurement

Comparison:

• Measurement according to ISO 17497-1

• Simulation of „Correlation Scattering Coefficient“ according to Mommertz

• Match is quite good, esp. for use in EASE

0

0,5

1

100 1000 10000

Frequency / Hz

Measurement

AFMG Reflex

52 www.AFMG.eu

Measurement in cooperation with RPG Diffusors Inc.

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 53

Software AFMG Reflex

Features:

• Entry of geometry as a cross section

• Calculation of spatial response

• Calculation of coefficients

• Result output as report document or pictures

• Direct export to EASE

53 www.AFMG.eu

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 54

Reflection at structured surface

a

a

cf

2

a

cf

2

a

cf

2

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 55

Outlook for AFMG Reflex

• In development • Better handling of small element • Higher order base functions

• Possible extensions • Import/Export of model data • Spline elements • Adding non-rigid BCs • Extending to 2 dimensions

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 56

InterfaceLab

Import/Export from and to AutoCad Import/Export from and to SketchUp Import/Export from and to BIM Simple routines to create Models

3D Modules Prototypes Import from other CAD programs

Laser scanning Holographic approach

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 57

Interface in EASE 4.3

Support for DXF2000 and Sketchup formats

Import and Export

Up to Google SKP 7.0

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 58

Modeling Techniques

Computational

Modelling

Wave-Based

Modelling

Ray-Based

Modelling

Statistical

Modelling

Difference

Methods

Element

Methods

Ray

Tracing

Mirror

Image SEA

FEM BEM

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 59

Room acoustical computer simulation

Simulation algorithm

CAD model + material data

Objective single number quantities

Realtime convolution

EARS

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 60

Impulse response calculations

Ray Tracing with counting balloon

Image Model method

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 61

Image sources

P

R

S

S1

S2

S12

S21

wall 2

wall 1

ii nnnnnnnnn SSSSS ...... 21121211...

• Geometrical construction

• Audibility test

• Very expensive for high reflection orders

time

Energy

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 62

n2

n1

n9

n8

n3

n7

n6

n4

n5

P r0

r

S

source

Ray tracing

ray source

wall reflection

detection

r/ c > tmax ?

last ray ?

end

detector

detector

source

distance law: ray density

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 63

Hybrid models

• „Forward audibility test of image sources“

• Rays (cones, ...) hitting a receiver can be addressed to audible image sources

• Dialects: Tracing of cones, triangular beams, pyramids, ..

• Higher Order possible but some mirror images are missed

• Parameter : spatial resolution calculation time

detector

(image) source

distance law: analytically t = rIS/c, E ~ 1/rIS2

rIS

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 64

Echogram

• Recording of counts and energy in time histograms

t

tray = rray/c

t

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 65

Fast calculation routines

• Fast Calculation of Impulse Responses

• Sophisticated Hybrid Algorithms

• Use of scattering coefficients

• Use of diffraction effects

• Fast intern calculation routines

• Multi-Thread approaches

• Network calculation

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 66

Intersection Algorithms Overview:

- In raytracing for a given ray vector often the next

intersecting surface (triangle) must be found

- Brute force approach, e.g. linear search through all triangles for the nearest intersection point, is very time-consuming

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 67

Intersection Algorithms

Previous Algorithm in EASE: - Log-based Hierarchival bounding volumes (HBV)

method

- From Outdoor 3D rendering engine

- Hierarchy of multiple Spheres and Boxes

- a particular child-volume is only tested if the parent was hit

- the resulting computation scaling with the number of triangles is approximately logarithmic

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 68

Intersection Algorithms

New Algorithm in v4.2:

- Log-based space partitioning

- Indoor-optimized

- Uniform Single-Level Grid (Each triangle associated with a grid cell is then

tested for intersection with the ray)

- Enables Vector Processing

(Given a ray specified by an origin and direction

vector, a fast grid traversal algorithm computes

the next grid cell intersected by the ray)

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 69

Intersection Algorithms Result: Algorithm optimized for acoustic models can be up to 5 times faster (standard

Pentium 4)

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 70

Multi-thread Mode in EASE 4.3

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 71

Multi-thread Mode

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 72

Node Server

Master Server

Simulations

SoftwareJob DB

Job ControllerComputation

Module

Job Controller Job Manager

SSH Deamon

Job StarterSSH Deamon

secure

connection

via the

internet

execute the

computation

module

control the

computation module

via a loopback

connection

start & control

simulation processes

via the local network

Network File System

Storage for

simulation data

and resultsjob control via

loopback

connection

LANInternet

Server Cluster

Job Management

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 73

Server Cluster

Calculation Time Improvement

0,0

5,0

10,0

15,0

20,0

25,0

0 1 2 3 4 5 6 7 8 9

Ca

lcu

lati

on

Tim

e [h

]

Number of Nodes

Multi-Node Calculations

Railway Station

Cathedral

Stadium

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 74

Airport model with 1952 loudspeakers

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 75

Server Cluster Call

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 76

Energy time curve EDT, T10,

T20, T30

C80, C50

LF, LFC

TS, Echo

AlCons, STI, RaSTI

Level etc.

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 77

Extension to low frequencies

• Theoretical Background

• Schroeder frequency

• Modal sound field

• Transmission in modal sound field

• Simulation and Measurement

• Finite Element Method - FEM

• Boundary conditions

• Comparison of measurement and simulation results

• Optimizing absorber locations

• Summary to FEM calculation

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 78

Schroeder Frequency

Resonances in closed volumes

Modal density ~ f²

Diffuse sound field above Schroeder Frequency

=> Marks transition between wave and geometrical acoustics

Geometrical Acoustics

Wave

Aco

ustics

V

Tfs 2000

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 79

Modal Sound Field

Modes result from room geometry

Complex spatial resonance patterns in 3D

34 Hz

68 Hz

103 Hz

137 Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 80

Sound Transmission in Modal Field

Isolated mode creates max-min pair

Transfer function is symmetric regarding receiver / source

Mode at 40 Hz

E1 E2

E3

E4

E5

Mode at 75 Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 81

Sound Transmission in Modal Field

Damping reduces the quality (Q) of the mode

Transfer function is smoother

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 82

Exciting undamped Modes

24,5Hz 34,5Hz

Point Source at 25Hz Point Source at 30Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 83

Exciting damped Modes

Point source in undamped room

Point source in damped room

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 84

Listening Room

Volume 49 m³

RT ~0.15 s

Schroeder-Frequency

fs = 110 Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 85

Simulation of Modal Sound Field Modeling wave acoustics using FEM

3D volume mesh of room

Solving the Helmholtz equation with boundary conditions

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 86

Boundary Conditions for Simulations

• Geometric acoustics

• Absorption

• Scattering

• Wave based acoustics

• impedance

p 2 v 2

p 1

v 1

1 2 3 Air Air Z0 = c Z0 = c

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 87

Modal Distribution

82 Hz

54 Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 88

Measurement versus Simulation

Right

Left Center

Comparison:

• Good qualitative reproduction of transfer function

• Simulation results show critical frequencies

Simulation

Measurement

Simulation

Measurement

Simulation

Measurement

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 89

Damping of Selected Modes • TF shows notch at ~90 Hz - how to smooth it?

• => Dampen corresponding mode

• Modes form between hard surfaces, pressure max on the surface

• => Replace hard surface material by absorber to suppress pressure max

• => Mode is attenuated

Measurement

Simulation

~ 90 Hz

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 90

Damping of Selected Modes

Measurement Simulation

Without Absorber With Absorber

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 91

Summary to FEM Calculation

• FEM modeling for low frequency range

• Determining complex boundary conditions can be difficult

• Qualitative results easily possible

• Optimize modal sound field regarding

• Loudspeaker placement

• Absorber type and placement

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 92

Speech Intelligibility

STI according to IEC 60268-16 (2003)

• Background

• Impulse response and modulation functions

• Implementation

• Eyring/Sabine model

• Noise levels

• Signal masking

• Criticism

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 93

Speech Intelligibility

Background:

Measurement via Modulation or IR: 14x7 MTF Values => STI

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 94

Speech Intelligibility

Typical MTF, STI and Scale:

STI = 0.590

> 0.75 Excellent

0.6 - 0.75 Good

0.45 - 0.6 Fair

0.3 - 0.45 Poor

< 0.3 Bad

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 95

Speech Intelligibility

Implementation:

• Eyring/Sabine model

• AURA, Raytracing

Direct Sound Early Reflections / Secondary Sources

Eyring RT/Tail

Time

L

Direct Sound Early Reflections / Secondary Sources

Reflections

Time

L

MTF

MTF

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 96

Speech Intelligibility

Implementation:

• Signal/Noise Ratio

0

0,2

0,4

0,6

0,8

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

STI

S/N

STI as a Function of S/N (Broadband)

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 97

Speech Intelligibility

Implementation:

• Signal Masking

0,7

0,75

0,8

0,85

0,9

0,95

1

45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

STI

Level in dB(A)

STI as a Function of Broadband Level

White

Pink

A-Weighted

f

L

f1 f2 = 2f1

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 98

Speech Intelligibility

Criticism:

• Stepped masking function

• Being revised for new version

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 99

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 1500 2000

ST

I

Delay [ms]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 500 1000 S

TI

Delay [ms]

Speech Intelligibility

Criticism:

• Echo situation: delay dependency

2 Pulses 3 Pulses

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 100

Speech Intelligibility • Criticism:

• Linearity of frequency response

• Bandwidth of analog measurements

f

L

500 Hz 1000 Hz 2000 Hz 4000 Hz

STIPa signal spectrum

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 101

Speech Intelligibility

Criticism:

• Binaural?

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 102

Latest development in modern measurement tools

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 103

• Software 1 (EASERA)

• Scale Model Measurements

• Absorption Coefficient Measurements

• Transmission Loss Measurements

• Software 2 (EASERA SysTune)

• SSA Filter

• Mobile Devices

• Hardware

• AD/DA transducer AUBION X8

Overview

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 104

Measurement Software EASERA

Graphic user interface to start a measure- ment

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 105

Measurement Module – Measuring Methods EASERA supports all common Measuring Methods

Simple

Reference

Dual-Channel-FFT

Dual-Channel-TDS

Comparison

External Stimulus

Playback

External

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 106

Post Processing - Displays EASERA Post Processing Module, Displays:

• Measures like: EDT, T10, T20, T30, C50, D50, C80, CT, MTF, MTI, STI, STIPa, RaSTI, ALCons, DSPL, TSPL, L50, L80, D/R, G, ST, IACC, LF/LFC (e.g. ISO 3382)

• Statistical Calculation: RMS, Noise Level, Crest Factor, S/N

• Time Domain Displays like: Impulse Response, Step Response , ETC, Schröder, Echogram

• Frequency Domain Displays like: Power Spectrum, Phase, Real & Imaginary Part, Group Delay

• Averaging, Integrating, Smoothing, Differentiating, Resampling

• Tabular View

• Overlay View

• Units like: Volt, Pa, FS, %, W, Ws, dBu, dBV, dBm, dBp, dBSPL, dBFS

• Waterfall

• Spectrogram

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 107

View&Calc Processing

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 108

Post Processing - Editing

www.sda.de

EASERA Editing Functions:

• Editing with User-defined Filters and Windows

• Editing by Data Averaging, Integrating, Smoothing, Differentiating, Resampling, Multiplication, Summation, Division, Subtraction, Power, Interpolation

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 109

Scale Model Measurements

EASERA Scale Model Measurements: - In air up to 192 kHz sample rate: Scale of 1:20

corresponds to 9.6 kHz sample rate => upper limit is 4 kHz octave

- Air attenuation is significant and must be compensated - Requires very low noise floor, since ΔL ~ t - Rescale by changing sample rate according to scale factor

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 110

Air Compensation

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 111

Change of Scaling Factor

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 112

Results of Scale Model Measurements

EASERA Scale Model Measurements:

170 ms at 192 kHz

3.4 s at 9,6 kHz 2.3 s

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 113

Live Sound Measurements

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 114

Live Sound Measurements Typical setup when using speech or music

signals:

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 115

Spectrally Selective Accumulation SSA • Speech or music signal: • Dedicated measurement signals

often not possible to use • Music and/or speech available during

rehearsal, less disturbing • „Non-ideal“ measurement signals

• Irregular in frequency • Irregular in time • No advance knowledge

• => Spectrally Selective Accumulation*:

• Extracts valid data • Rejects noise, interference,

perturbations

Classic Music: Non-Continuous in Frequency, Preferred Tones

Speech: Non-Continuous in Time and Frequency

*Patent pending

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 116

Spectrally Selective Accumulation SSA

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 117

Spectrally Selective Accumulation SSA Signal Threshold Filter (Action 1)

• Data only used when critical S/N reached

• Excludes unexcited frequencies from subsequent processing

• Threshold spectrum can be measured or entered

• For reference and signal spectrum

Rejected

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 118

Spectrally Selective Accumulation SSA Excursion Filter (Action 2):

Compares new transfer function measurement with existing

Deviating values outside tolerance are discarded/suppressed

Provides high immunity against temporary perturbations

Rejected

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 119

Coherence Filter (Action 3):

• Coherence: Linear relationship between input I and output O

Coherent Incoherent Rejected

2

22

O

I

I

OfC

C → 1 for <O/I>² ≈ <O²>/<I²>

C → 0 for <O/I> → 0

C → const for noise floor > 0

Spectrally Selective Accumulation SSA

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 120

SysTune Web Interface

SysTune @ iPad:

- SysTune plug-in with web interface

- Make measurements with SysTune from mobile device

- Control SysTune remotely

- For any platform with a browser

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 121

SysTune Web Interface

How it works: Laptop SysTune

Soundcard

Mobile Device

Wireless Microphone

Sound System

Sound

Input

Output

Control

Data

Reference Input

WLAN

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 122

SysTune Web Interface

Supported Functions:

- Start / Stop Analysis

- Spectrum, IR, TF

- Frequency Resolution

- Capture Overlays

- Rename/Remove

Overlays

- Show/Hide Overlays

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 123

AUBION X.8

Professional Soundcard:

- Fully digital and calibrated

- 8 Inputs

- Integrated with SysTune and EASERA

- Ethernet-based

- Daisy-chaining possible

AFMG AHNERT FEISTEL MEDIA GROUP

W. Ahnert www.AFMG.eu 124

AUBION X.8 Features: - 8 Inputs (4 mic/line, 4 line), 2+2 outputs - 2x Ethernet with switch, SPDIF I/O optional - 10 Hz – 20 kHz, Dynamic Range 110 dB - THD < -100 dB, Crosstalk Attenuation > 110 dB - ASIO drivers