Advanced Wireless Communications lecture notes: section 4

Post on 25-Feb-2022

7 views 0 download

Transcript of Advanced Wireless Communications lecture notes: section 4

Advanced Wireless Communications

lecture notes: section 4

Andrea M. Tonello

Double Master Degree in Electrical Engineering ‐ University of Udine, Italy 

and Information and Communication Engineering ‐ University of Klagenfurt, Austria

Note: these lecture notes have been prepared as part of the material for the joint class “Advanced wireless communications” and “Comunicazioni Wireless” by A. Tonello. The class has been offered in the Spring 2015 term, by 

means of video conferencing in time sharing between two locations.   

A. Tonello 2

Section content Topics

oMulticarrier modulation

oDiscrete time system representation

oOrthogonality principle: DMT and FMT

oOFDM with cyclic prefix

A. Tonello 3

System model

A. Tonello 4

System model

ADSL : advanced digital subscriber line

DAB : digital audio broadcast

DVB : digital video broadcast

IEEE 802.11 and Hiperlan II : wireless LAN

proposed although killed for 3rd generation cellular

Adopted in LTE

A. Tonello 5

General architecture

( )t

10( )a lT

0( )ka lT

kf

0( )My nT

10( )y nT 1

0ˆ ( )a lT

0ˆ ( )Ma lT

1f

Mf

1f

0( )Ma lT

Mf

0( )ky nT 0ˆ ( )ka lT

kf

Two efficient digital implementations

DMT (Discrete Multitone): well known OFDM (orthogonal frequency division multiplexing)

scheme. Prototype filter with rectangular impulse response

FMT (Filtered Multitone): prototype pulse with frequency concentrated response

A. Tonello 6

System model

A. Tonello 7

System model

A. Tonello 8

Discrete time realization

A. Tonello 9

Discrete time realization

A. Tonello 10

Discrete time realization

A. Tonello 11

Receiver

A. Tonello 12

Receiver

A. Tonello 13

Receiver output signal

A. Tonello 14

Bidimensional Nyquist criterion

A. Tonello 15

Bidimensional Nyquist criterion

A. Tonello 16

Orthogonal solutions

A. Tonello 17

Orthogonal solutions (DMT‐OFDM‐FMT)

A. Tonello 18

Comparison of SNR in SC and MRC

A. Tonello 19

OFDM

A. Tonello 20

OFDM

A. Tonello 21

Efficient realization of an FMT system

Complexity:  M/N log2M + Lg,h /N operations/sample

M point IDFT  and cyclic extension to  2 1 2. . .( , )M l c m M N L M L N( )( ) ( ) 0,..., 1ig nN g i nN i N Pulses: PP components of order N, i.e.,

2L Sample with period  

Synthesis

Dual operations  Analysis

(Lg,h: pulse length) 

A. Tonello 22

OFDM with Cyclic Prefix

M tones (sub‐channels)

Rectangular sub‐channel pulse (window) of duration N > M samples

Cyclic prefix (CP) of length µ=N‐M samples (longer than the channel duration)

A. Tonello 23

OFDM with cyclic prefix

A. Tonello 24

OFDM with cyclic prefix

A. Tonello 25

OFDM with cylic prefix

A. Tonello 26

OFDM with cylic prefix

A. Tonello 27

OFDM with cylic prefix

A. Tonello 28

OFDM design

Knowing the channel duration NpT and the total signal bandwidth

W=1/T, we choose CP of length μ samples larger than Np

Then, we set the number of sub‐channels M so that the rate penalty

is not too high:

R = M / ((M+ μ)T)

Transmission rate in CP‐OFDM

A. Tonello 29

Main advantages of multicarrire modulation

MC modulation allows to simplify the equalization task

CP‐OFDM is orthogonal is a multipath channel

The power can be optimally allocated over the sub‐channels

Spectrum notching can be easily applied 

FDMA can be easily implemented to multiple in the frequency 

domain multiple users

A. Tonello 30

Optimal power allocation in OFDM

A. Tonello 31

A. Tonello 32

A. Tonello 33

A. Tonello 34