Activity of PNU 100480 and its major in whole blood and...

Post on 16-Jun-2018

217 views 0 download

Transcript of Activity of PNU 100480 and its major in whole blood and...

Activity of PNU‐100480 and its major metabolite in whole blood and broth 

culture models of TB

Paul Converse1, Jin Lee1, Kathy Williams1, Opokua Amoabeng1, Kim Dionne1, Nicole Parish1, Robert Wallis2, Eric Nuermberger1

1Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD2Pfizer Inc., Groton, CT

PNU‐100480

• Thiomorpholinyl derivative of linezolid

• In vitro:– MIC = 0.25 μg/ml vs. M. tb H37Rv

• In vivo:– Rapidly metabolized to cmpds with ~ same MIC as parent

Dose‐ranging activity of PNU, LZD in mice

01

23

45

67

8

0 25 50 100 130 260

Dose (mg/kg)

Lung

log1

0 CF

U co

unt

INHPNU-100480Linezolid

D0 count = 7.49

Williams et al, AAC (2009);53:1314

Parameter

Regimen MIC (mg/L) Cmax(mg/L)

AUC0-24(mg-h/L)

PNU-100480 + metab.100 mg/kga

0.25 21.7 117

LZD 130 mg/kgb 0.25 58.4 379aCompiled (i.e., sum of the parent + metab) concentration-time profile used for PK calcs. bFor comparison, steady state values in humans are: Cmax, 18.3-18.8 mg/L; AUC0-24, 215-294 mg-h/L

PNU contributes sterilizing activity to RHZ and novel combinations

Proportion (%) of mice with relapse after treatment for: 

Regimen* 3 months 4 months 5 months 6 months

2RHZ + 4RH 18 of 20 (90%) 1 of 20 (5%) 0 of 20 (0%)

2RHZU + 2 RHU 9 of 20 (45%) 1 of 20 (5%)**

2RHZL + 2 RHL 20 of 20 (100%)*R = rifampin, H = isoniazid, Z = pyrazinamide, U= PNU-100480 (sutezolid), L = linezolid**p< 0.005 vs. RHZ/RH control

Williams et al, Am J Respir Crit Care Med 2009Williams et al, Antimicrob Agent Chemother 2012

% (proportion) of mice with relapse after treatment for: 

Regimen* 2 months 3 months 4 months

2RHZ/4RH 100% (15/15) 64%  (9/14)

JCPaU 93%  (14/15) 13%  (2/15)** 7%  (1/15)*JCPa 100% (15/15) 60%  (9 /15) 33%  (5/15)

*R = rifampin, H = isoniazid, Z = pyrazinamide, U= PNU-100480 (sutezolid), J = bedaquiline, C = clofazimine, Pa = PA-824 **p< 0.05 vs. RHZ/RH control

Objectives of study

To gain insight into why PNU is more bactericidal than LZD despite achieving lower exposures in mice by:

1. Comparing the concentration‐response profile for LZD and PNU in several in vitro models of:– extracellular infection (broth, plasma), and– intracellular infection (WBA, J774 macrophages)

2. Determining the respective contributions of PNU‐100480 (the parent) and PNU‐101603 (the principal metabolite) in the same assays

Time to positivity in WB cultures

Whole blood activity by calculated log kill 

WBA of PNU‐100480 and PNU‐101603 

Oxie activity in spiked WB or plasma from healthy volunteers

Time‐kill study in complete 7H9 broth 

Time‐kill study in J774 macrophages 

Modeling the respective contributions of PNU‘480 and ‘603 in humans

• Developed dose‐response curve for each in vitro model• Used plasma PK profiles from Ph I SAD study to estimate the log CFU ct at each point of sampling

• Using control CFU cts (Time 0 or untreated), calculated the area under the 24‐hr killing (or inhibition) curve for a single 1 g daily dose for each cmpd

• Assumed additivity (based on in vitro checkerboard assay) and calculated the contribution of each cmpd to the overall activity of the combination 

Cumulative activity over 24 hrs by model

Conclusions

• In vivo activity of PNU‐100480 likely derives from the combined activity of the parent and the sulfoxide metabolite

• Though the metabolite comprises ~85% of total serum AUC, the parent drives the activity against intracellular bacilli (e.g., WBA, J774, mice?) due to its striking potency advantage

• On the other hand, activity vs. extracellular M.tb may be driven by the more abundant metabolite

• Modeling cell kill based on actual CFU from WB or plasma culture gives results more like human EBA

• The potency advantage of PNU‐100480 over linezolid will likely be smaller against extracellular as opposed to intracellular bacilli 

Next steps

• Similar analysis for linezolid • Repeat WBA CFU cts using additional volunteers• More sophisticated models of additive oxie effects, using steady state PK data from humans and mice

• Confirm with one or more additional strains

Acknowledgements• The work

Kathy Williams Rokeya Tasneen Paul Converse Jin LeeOpokua Amoabeng Tong Zhu

• Intellectual supportKen Stover Bob WallisSteve Brickner Mark Mitton-FryColleagues at the TB Alliance

• Funding supportPfizer, NIH (R01-AI-090820)