A Benchmark Approach to Investing, Pricing and Hedging · A Benchmark Approach to Investing,...

Post on 17-Jul-2020

4 views 0 download

Transcript of A Benchmark Approach to Investing, Pricing and Hedging · A Benchmark Approach to Investing,...

A Benchmark Approach to Investing,Pricing and Hedging

Eckhard PlatenUniversity of Technology Sydney

Pl. & Heath (2006, 2010), A Benchmark Approach to Quantitative Finance. Springer

Pl. & Bruti-Liberati (2010), Numerical Solution of Stochastic DifferentialEquations with Jumps in Finance. Springer

Baldeaux &Pl. (2013). Functionals of MultidimensionalDiffusions with Applications to Finance. Springer

1 Best Performing Portfolio as Benchmark

• with focus on long term

• if possible pathwise

• should prefer more for less

• diversified portfolio

• robust, almost model independent construction

• sustainable (strictly positive long only)

• criterion independent from denomination

• criterion independent from sequence of drawdown events

⇒maximize logarithm of portfolio

1

1973 1980 1988 1995 2003 20110

3

6

9

12

15x 10

4

EWI114MCI

EWI141 and MCI

2

1973 1980 1988 1995 2003 20111.5

2

2.5

3

3.5

4

4.5

5

5.5

6

log(EWI114)log(MCI)

logarithms of EWI114 and MCI

3

1976 1984 1993 2002 2011

0

0.02

0.04

0.06

0.08

0.10

0.12

long term growth EWI114long term growth MCI

Long term growth of EWI114 and MCI

4

Key idea:

Make the “best” performing portfolio Sδ∗t numeraire or benchmark

5

Portfolio:

Sδt =

d∑j=0

δjtSjt

Sjt - jth constituent (e.g. cum dividend stocks)

6

Long Term Growth:

limt→∞

1

tlog

(Sδt

Sδ0

)≤ lim

t→∞

1

tlog

(Sδ∗t

Sδ∗0

)a.s. pathwise

Sδ∗ is the numeraire portfolio (NP)Long (1990)

7

Main Assumption:

There exists NP Sδ∗t ,

which means

Sδt

Sδ∗t

≥ Et

(Sδs

Sδ∗s

)(∗)

for all 0 ≤ t ≤ s <∞ and all nonnegative portfolios Sδt ,

Et(·) - real world conditional expectation under information given at time tSδ∗t - numeraire portfolio (NP), see Long (1990)

8

Benchmarking:

make NP numeraire and benchmark

Sδt =

Sδt

Sδ∗t

− benchmarked portfolio

Sjt =

Sjt

Sδ∗t

− jth benchmarked security

9

Existence of NP ⇔ Supermartingale Property

Sδt ≥ Et(S

δs) (∗)

for all 0 ≤ t ≤ s <∞ and all nonnegative Sδt ,

• The key property of financial market!

• model independent

• makes also in the short term “best” performance of Sδ∗ precise

• existence of NP, extremely general, Karatzas and Kardaras (2007)

10

Outperforming Long Term Growth

• long term growth rate

gδ = lim supt→∞

1

tln

(Sδt

Sδ0

)

strictly positive portfolio Sδ

pathwise characteristic

11

Theorem The NP Sδ∗ achieves the maximum long term growth rate.For any strictly positive portfolio Sδ

gδ ≤ gδ∗ .

NP outperforms long term growth pathwise!

• Pathwise outperformance asymptotically over time!

• Ideal long term investment if no constraints!

12

Proof: Consider strictly positive portfolio Sδ , with Sδ0 = Sδ∗

0 = x >

0. By supermartingale property (∗) of Sδ and Doob (1953), for any k ∈1, 2, . . . and ε ∈ (0, 1) one has

expε kP(

supk≤t<∞

Sδt > expε k

)≤ E0

(Sδk

)≤ Sδ

0 = 1.

13

For fixed ε ∈ (0, 1)

∞∑k=1

P

(sup

k≤t<∞ln(Sδt

)> εk

)≤

∞∑k=1

exp−ε k <∞.

By Lemma of Borel and Cantelli there exists kε such that for all k ≥ kε

and t ≥ kln(Sδt

)≤ ε k ≤ ε t.

14

Therefore, for all k > kε

supt≥k

1

tln(Sδt

)≤ ε,

which implies

lim supt→∞

1

tln

(Sδt

Sδ0

)≤ lim sup

t→∞

1

tln

(Sδ∗t

Sδ∗0

)+ ε.

Since the inequality holds for all ε ∈ (0, 1), theorem follows.

15

Best Performance of NP also in the Short Term

Outperforming Expected Benchmarked Returns

(∗)⇒ nonnegative Sδ is supermartingale and Sδ∗t = 1

=⇒

• expected benchmarked returns

Et

(Sδt+h − Sδ

t

Sδt

)≤ Et

(Sδ∗t+h − Sδ∗

t

Sδ∗t

)= 0

t > 0, h > 0, Sδ nonnegative

=⇒ No strictly positive expected benchmarked returns possible!

16

Outperforming Expected Growth

• expected growth

gδt,h = Et

(ln

(Sδt+h

Sδt

))for t, h ≥ 0.

17

invest in strictly positive portfolio Sδ and small fraction ε ∈ (0, 112

) insome nonnegative portfolio Sδ ,which yields perturbed portfolio Sδε

• derivative of expected growth in the direction of Sδ:

∂gδε

t,h

∂ε

∣∣∣∣ε=0

= limε→0+

1

ε

(gδε

t,h − gδt,h

)

18

Definition Sδ is called growth optimal if

∂gδε

t,h

∂ε

∣∣∣∣ε=0

≤ 0

for all t and h ≥ 0.

19

• classical characterization: maximization of expected logarithmic utilityfrom terminal wealthKelly (1956), Latane (1959), Breiman (1960), Hakansson (1971a), Thorp(1972), Merton (1973a), Roll (1973) and Markowitz (1976)equivalent

20

Theorem

The NP is growth optimalif its expected growth is finite.

NP outperforms expected growth!

21

Proof: Pl. (2011)For t ≥ 0, h > 0, and a nonnegative portfolioSδ we introduce the portfolio

ratio Aδ,ht =

Sδt+h

Sδt

, which is set to 1 for Sδt = 0. For ε ∈ (0, 1

2); and

a nonnegative portfolio Sδ , with Sδt > 0, consider the perturbed portfolio

Sδε with Sδt = Sδ∗

t , yielding portfolio ratio Aδε

t,h = εAδt,h + (1 −

ε)Aδ∗t,h > 0. By the inequality ln(x) ≤ x− 1 for x ≥ 0,

Gδε

t,h =1

εln

(Aδε

t,h

Aδ∗t,h

)≤

1

ε

(Aδε

t,h

Aδ∗t,h

− 1

)=Aδ

t,h

Aδ∗t,h

− 1

and

Gδε

t,h = −1

εln

(Aδ∗

t,h

Aδε

t,h

)≥ −

1

ε

(Aδ∗

t,h

Aδε

t,h

− 1

)=Aδ

t,h −Aδ∗t,h

Aδε

t,h

.

22

Because ofAδε

t,h > 0 one obtains forAδt,h −A

δ∗t,h ≥ 0

Gδε

t,h ≥ 0,

and forAδt,h −A

δ∗t,h < 0 because of ε ∈ (0, 1

2) andAδ

t,h ≥ 0

Gδε

t,h ≥ −Aδ∗

t,h

Aδε

t,h

= −1

1− ε+ εAδ

t,h

Aδ∗t,h

≥ −1

1− ε≥ −2.

23

Summarizing yields

−2 ≤ Gδε

t,h ≤Aδ

t,h

Aδ∗t,h

− 1,

where by (∗)

Et

(Aδ

t,h

Aδ∗t,h

)≤ 1.

24

By the Dominated Convergence Theorem

∂gδε

t,h

∂ε

∣∣∣∣ε=0

= limε→0+

Et

(Gδε

t,h

)= Et

(lim

ε→0+Gδε

t,h

)

= Et

(∂

∂εln

(Aδε

t,h

Aδ∗t,h

) ∣∣∣∣ε=0

)= Et

(Aδ

t,h

Aδ∗t,h

)− 1.

This proves that NP Sδ∗ is growth optimal.

25

Systematic Outperformance

Definition A nonnegative portfolioSδ systematically outperforms a strictlypositive portfolio Sδ if

(i) Sδt0

= Sδt0

;

(ii) P (Sδt ≥ Sδ

t ) = 1 for some t > 0 and

(iii) P(Sδt > Sδ

t

)> 0.

• also called relative arbitrage in Fernholz & Karatzas (2005)

26

Theorem The NP cannot be systematically outperformedby any nonnegative portfolio.

• NP can systematically outperform other portfolios.

27

Proof: Consider nonnegative Sδ with Sδt = 1 where Sδ

s ≥ 1 almostsurely at s ∈ [t,∞). By the supermartingale property (∗)

0 ≥ Et

(Sδs − S

δt

)= Et

(Sδs − 1

).

Since Sδs ≥ 1 and Et(S

δs) ≤ 1, it can only follow Sδ

s = 1.=⇒ Sδ

s = Sδ∗s .

28

• NP needs shortest expected time to reach a given wealth levelKardaras & Platen (2010)

29

Strong Arbitrage

• only market participants can exploit arbitrage with their total wealth

• limited liability

=⇒ nonnegative total wealth of each market participant

Definition A nonnegative portfolio Sδ is a strong arbitrage if Sδ0 = 0

and for some T > 0

P(SδT > 0

)> 0.

• Loewenstein & Willard (2000) - same notion of arbitragethrough economic arguments

• Pl. (2002)-mathematical motivationthrough supermartingale property (∗)

30

Theorem There is no strong arbitrage.

31

Proof:(∗) =⇒

Sδ nonnegative supermartingale

=⇒0 = Sδ

0 ≥ E(SδT

∣∣A0

)= E(Sδ

T )

=⇒P (Sδ

T > 0) = P (SδT > 0) = 0.

32

Classical notion of arbitrage is too restrictive

• Delbaen & Schachermayer (1998)

no free lunches with vanishing risk , existence of risk neutral measure, APT

• Loewenstein & Willard (2000)

free snacks & cheap thrills , some free lunch with vanishing risk

• exploiting weak forms of classical arbitrage requires to allow negativetotal wealth

• pricing via hedging by avoiding “strong arbitrage” makes no sensesince there is no “strong arbitrage” under (∗).

33

How to approximate the NP in the real market?

• diversification leads asymptotically to the NP (Pl. 2005)

• confirm empirically by visualizing diversification effect

• simplest diversification:

equal value weighting = naive diversification

34

Pl. & Rendek (2012)

• investment universe:

market capitalization weighted indices generating the MSCI

• Industry Classification Benchmark (Datastream, Reuters ...):

54 countries with country index

10 industry indices

19 supersector indices

41 sector indices

114 country subsector indices

all market capitalization weighted

35

Equi-Weighted Index (EWId)

d constituents

SδEWIdtn

= SδEWIdtn−1

1 +d∑

j=1

ℓd,j∑k=1

πj,kδEWId,tn−1

Sj,ktn − S

j,ktn−1

Sj,ktn−1

,

• Naive diversification over ℓd,j countries

and then over d = 10, 19, 41, 114 world industries

• equal value weighting uncertainties of different economic activities

36

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 20120

50,000

100,000

150,000

MCI

EWI10EWI19

EWI41

EWI114

EWI1

The MCI and five equi-weighted indices: EWI1 (market), EWI10 (industry),EWI19 (supersector), EWI41 (sector), EWI114 (subsector).

37

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 201210

1

102

103

104

105

106

MCIEWI1

EWI10

EWI19

EWI114

EWI41

The MCI and five equi-weighted indices in log-scale: EWI1 (market), EWI10(industry), EWI19 (supersector), EWI41 (sector), EWI114 (subsector).

38

• all based on the same country industry subsectors of the equity market

• all resulting indices mostly driven by nondiversifiable uncertainty

• Empirically: Better performance through better diversification!

39

Illustrating Diversification Phenomenon:

• return of benchmarked constituent over small period [t, t+ h]

Rj =Sjt+h − S

jt

Sjt

j ∈ 1, 2, . . .

40

Assume for illustration purposes: R1,R2, · · · independent, and

Et(Rj) = 0

Et

((Rj)2

)= σ2h

h > 0, j ∈ 1, 2, . . .

41

• return of portfolio equalssum of weighted returns of constituents

• return of benchmarked EWIℓ with ℓ constituents:

RδEWIℓ =SδEWIℓ

t+h − SδEWIℓt

SδEWIℓt

=1

ℓ∑j=1

Rj

42

=⇒

Et(RδEWIℓ) = 0

Et

((RδEWIℓ)2

)=

1

ℓ2

ℓ∑j=1

σ2h =1

ℓσ2h

=⇒

limℓ→∞

Et

((RδEWIℓ)2

)= 0

Strong Law of Large Numbers (Kolmogorov)⇒

limℓ→0

RδEWIℓ = 0

almost surely

43

for ℓ >> 1

=⇒ RδEWIℓ ≈ 0

=⇒ SδEWIℓt ≈ 1

=⇒ SδEWIℓt = SδEWIℓ

t Sδ∗t ≈ Sδ∗

t

a.s. for all t

44

Diversification yields approximation of the NP !

• diversification holds more generally

• model independent phenomenon

• arises naturally

• can be systematically exploited

45

Naive Diversification Theorem

Pl. & Rendek (2012)

• continuous market, Merton (1972)

• benchmarked constituents

dSjt

Sjt

=∑k

σj,kt dW k

t

W 1,W 2, . . . - Brownian motions

46

• fraction of wealth invested

πjδ,t =

δjt Sjt

Sδt

=δjtS

jt

Sδt

47

• benchmarked portfolio

dSδt

Sδt

=∑j

πjδ,t

dSjt

Sjt

=∑j

πjδ,t

∑k

σj,kt dW k

t

48

• return process of a benchmarked portfolio Sδt

dQδt =

1

Sδt

dSδt

t ≥ 0 with Qδ0 = 0

49

• Quadratic Variation of Return Process

⟨Qδℓ⟩t =∫ t

0

∑k

∑j

πjδℓ,sσj,ks

2

ds

• Tracking rate

Tδℓ(t) =d

dt⟨Qδℓ⟩t =

∑k

∑j

πjδℓ,tσj,kt

2

50

• benchmarked NP equals constant onereturn process of benchmarked NP equals zero

dSδ∗t

Sδ∗t

=∑k

∑j

πjδ∗,tσj,kt dW k

t = 0

=⇒ tracking rate

Tδ∗(t) =d

dt⟨Qδ∗⟩t = 0

51

• ℓth equi-weighted index (EWIℓ)

πjδEWIℓ,t

=

1ℓ

for j ∈ 1, 2, . . . , ℓ0 otherwise.

52

Definition:

A sequence (Sδℓ)ℓ∈1,2,... of strictly positive benchmarked portfolios, withinitial value equal to one, is called a sequence of benchmarked approxi-mate NPs if for each ε > 0 and t ≥ 0 one has

limℓ→∞

P

(Tδℓ(t) =

d

dt

⟨Qδℓ

⟩t> ε

)= 0.

53

• benchmark captures general, systematic or non-diversifiable market un-certainty

• benchmarked primary security accounts capture specific or idiosyncraticuncertainty

• different types of economic activity yield naturally different specific un-certainties

• specific uncertainty can be diversified

54

Particular specific uncertainty drives in reality usually only

returns of restricted number of benchmarked primary security accounts:

55

Definition:

A market is well-securitized if there exists q > 0 and square integrableσ2 = σ2

t , t ≥ 0 with finite mean for all ℓ, k ∈ 1, 2, . . . and t ≥ 0

1

∣∣∣∣∣∣ℓ∑

j=1

σj,kt

∣∣∣∣∣∣2

≤1

ℓqσ2

t

P-almost surely.

• k-th uncertainty affects not too many constituents.

56

Naive Diversification Theorem:

In a well-securitized market the sequence of benchmarked equi-weightedindices is a sequence of benchmarked approximate NPs.

Pl. & Rendek (2012)

57

• return process of ℓth benchmarked EWI

QδEWIℓt =

ℓ∑j=1

1

∑k

∫ t

0

σj,ks dW k

s

58

• quadratic variation of return process

⟨QδEWIℓ

⟩t=

1

∫ t

0

∑k

∣∣∣ 1√ℓ

ℓ∑j=1

σj,ks

∣∣∣2ds• tracking rate

TδEWIℓ(t) =d

dt

⟨QδEWIℓ

⟩t=

1

∑k

∣∣∣ 1√ℓ

ℓ∑j=1

σj,kt

∣∣∣2

59

Lemma Assume that for all ε > 0 and t ≥ 0

limℓ→∞

P

1

ℓ∑k

∣∣∣ 1√ℓ

ℓ∑j=1

σj,kt

∣∣∣2 > ε

= 0,

then the sequence of equi-weighted indices is a sequence of benchmarkedapproximate NPs.

60

Proof:For ε > 0 and t > 0

0 = limℓ→∞

P

1

∑k

∣∣∣ 1√ℓ

ℓ∑j=1

σj,kt

∣∣∣2 > ϵ

= lim

ℓ→∞P

(d

dt

⟨QδEWIℓ

⟩t> ε

)= lim

ℓ→∞P (TδEWIℓ(t) > ε)

61

Proof of Naive Diversification Theorem:

By Markov inequality in a well-securitized market

limℓ→∞

P

1

∑k

∣∣∣ 1√ℓ

ℓ∑j=1

σj,kt

∣∣∣2 > ε

= lim

ℓ→∞P

(1

ℓqσ2

t > ε

)≤ lim

ℓ→∞

1

ε

1

ℓqE(σ2

t

)= 0,

NDT follows from previous Lemma.

62

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 201210

1

102

103

104

105

106

EWI114

EWI1145

EWI11480

EWI11440

EWI114200

MCIEWI114240

Logarithms of MCI, EWI114 without transaction cost and EWI114ξ withtransaction costs of 5,40,80,200 and 240 basis points.

63

1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 20120

50,000

100,000

150,000

EWI114

EWI1142

EWI1144

EWI11416

EWI11432

EWI114m reallocated daily and every 2, 4, 8, 16 and 32 days.

64

Transaction cost 0 5 40 80 200 240

Reallocation terms 1

Final value 139338.64 130111.93 80543.07 46555.04 8988.23 5194.46

Annualised average return 0.1979 0.1961 0.1834 0.1689 0.1254 0.1109

Annualised volatility 0.1135 0.1135 0.1135 0.1135 0.1134 0.1134

Sharpe ratio 1.4205 1.4046 1.2930 1.1654 0.7822 0.6544

Reallocation terms 2

Final value 124542.04 119369.00 88697.63 63166.73 22808.64 16240.40

Annualised average return 0.1949 0.1938 0.1859 0.1770 0.1500 0.1411

Annualised volatility 0.1134 0.1134 0.1134 0.1134 0.1135 0.1136

Sharpe ratio 1.3955 1.3856 1.3163 1.2369 0.9987 0.9193

Reallocation terms 4

Final value 111899.82 108230.16 85698.25 65628.82 29467.48 22562.42

Annualised average return 0.1921 0.1912 0.1850 0.1780 0.1568 0.1497

Annualised volatility 0.1135 0.1135 0.1134 0.1134 0.1134 0.1135

Sharpe ratio 1.3699 1.3622 1.3080 1.2459 1.0591 0.9967

65

Transaction cost 0 5 40 80 200 240

Reallocation terms 8

Final value 100505.37 97963.66 81881.57 66705.62 36055.10 29367.02

Annualised average return 0.1892 0.1885 0.1837 0.1783 0.1621 0.1566

Annualised volatility 0.1127 0.1127 0.1127 0.1127 0.1128 0.1128

Sharpe ratio 1.3531 1.3471 1.3051 1.2569 1.1119 1.0634

Reallocation terms 16

Final value 98775.24 96892.29 84677.43 72588.14 45711.97 39177.91

Annualised average return 0.1887 0.1882 0.1847 0.1806 0.1684 0.1643

Annualised volatility 0.1130 0.1130 0.1130 0.1130 0.1131 0.1131

Sharpe ratio 1.3463 1.3418 1.3102 1.2740 1.1647 1.1281

Reallocation terms 32

Final value 114592.50 112929.09 101939.59 90678.85 63804.84 56744.28

Annualised average return 0.1927 0.1923 0.1896 0.1865 0.1772 0.1741

Annualised volatility 0.1131 0.1131 0.1131 0.1131 0.1133 0.1133

Sharpe ratio 1.3797 1.3763 1.3522 1.3245 1.2408 1.2127

66

0 50 100 1500

100

200

300

400

500

600

GOP

EWI

MCI

Simulated GOP, EWI and MCI under the Black-Scholes model

67

0 50 100 1500.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

benchmarked MCI

benchmarked EWI

Simulated benchmarked GOP, EWI and MCI under the Black-Scholesmodel

68

Example of a Multi-Asset BS Model

• jth primary security account

dSjt = Sj

t

[(r + σ2

(1 +

1√d

))dt+

σ√d

d∑k=1

dW kt + σ dW j

t

]

t ∈ [0, T ], j ∈ 1, 2, . . . , d, σ > 0

general market risk, specific market risk

69

• NP fractions

πjδ∗,t

=(√

d(1 +√d))−1

j ∈ 1, 2, . . . , d

π0δ∗,t

=(1 +√d)−1

• NP SDE

dSδ∗t = Sδ∗

t

((r + σ2

)dt+

σ√d

d∑k=1

dW kt

)

• simulate over T = 32 years d = 50 risky primary security accounts

σ = 0.15, r = 0.05

70

• Benchmarked primary security accountBS - model

dSjt = d

(Sjt

Sδ∗t

)= Sj

tσdWjt

martingale

71

0

5

10

15

20

25

0 5 10 15 20 25 30 35

time

Simulated primary security accounts.

72

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

time

GOPB

Simulated GOP and savings account.

73

Equal Weighted Index

SδEWId holds equal fractions

πjδEWId,t

=1

d+ 1

j ∈ 0, 1, . . . , d

• tracking rate for BS example:

T dδEWId

(t) =d∑

k=1

d+ 1

(1√d− 1

))2

= d

d+ 1

(1√d− 1

))2

≤σ2

(d+ 1)→ 0

74

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

time

GOPEWI

Simulated NP and EWI.

75

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

time

GOPindex

Simulated diversified accumulation index and NP.

76

Diversification in an MMM Setting

Pl. (2001), minimal market model (MMM)

• savings accountS0(d)(t) = expr t

• discounted GOP drift

αδ∗t = α0 expη t

• jth benchmarked primary security account

Sj(d)(t) =

1

Y jt α

δ∗t

77

• square root process

dY jt =

(1− η Y j

t

)dt+

√Y jt dW

jt

• NP

Sδ∗(d)(t) =

S0(d)(t)

S0(d)(t)

• jth primary security account

Sj(d)(t) = Sj

(d)(t)Sδ∗(d)(t)

78

0

50

100

150

200

250

300

350

400

450

0 5 9 14 18 23 27 32

Primary security accounts under the MMM

79

0

10

20

30

40

50

60

0 5 9 14 18 23 27 32

Benchmarked primary security accounts

80

0

10

20

30

40

50

60

70

80

90

100

0 5 9 14 18 23 27 32

EWI

GOP

NP and EWI

81

0

10

20

30

40

50

60

70

80

90

100

0 5 9 14 18 23 27 32

Market index

GOP

NP and market index

82

Diversified Portfolios

Fundamental phenomenon of diversification leads naturally to NPalso for more general diversified portfolios than the EWI:

Definition A sequence of strictly positive portfolios (Sδd)d∈1,2,... isa sequence of diversified portfolios if∣∣∣πj

δd,t

∣∣∣ ≤

K2

d12+K1

for j ∈ 0, 1, . . . , d

0 otherwise

a.s. for t ∈ [0, T ].

• still small fractions but more general than EWIs

83

• jth benchmarked primary security account

Sjt =

Sjt

Sδ∗t

dSjt = −Sj

t

∑k

sj,kt dW kt

• sj,kt (j, k)th specific volatilitymeasures specific market risk of Sj

with respect toW k diversifiable uncertainty

• volatility of NP measures general market risk, nondiversifiable uncertainty

84

• kth total specific volatility

skt =∑j

|sj,kt |

Definition A market is called regular if

E((skt)2) ≤ K5

for all t ∈ [0,∞), k ∈ 1, 2, . . . .

85

Tracking Rate

Tδ(t) =d

dt⟨Qδ⟩t =

∑k

d∑j=0

πjδ,t s

j,kt

2

Tδ(t) - quantifies “distance” between Sδ and Sδ∗

Tδ∗(t) = 0

86

Approximate NP

Definition A strictly positive portfolio Sδd is an approximate NP if forall t ∈ [0, T ] and ε > 0

limd→∞

P (Tδd(t) > ε) = 0.

87

Diversification Theorem (Pl. 2005)

In a regular market

any diversified portfolio is an approximate NP.

• model independent

88

Proof:

E (Tδd(t)) ≤d∑

k=1

E

d∑

j=0

|πjδ,t| |s

j,kt |

2

≤(K2)

2

d(1+2K1)

d∑k=1

E((skt)2) ≤ (K2)

2K5

d(1+2K1)d→ 0

Markov inequality =⇒

limd→∞

P (Tδd(t) > ε) ≤ limd→∞

1

εE (Tδd(t)) = 0.

89

Summary on Diversification

• extremely robust approach to asset management

• does not rely on estimating some expected returns

• diversification can be refined

• diversified market indices are in reality similar in their dynamics⇒ proxies for the NPe.g. MSCI, S&P 500, EWI114, EWI142 ...

90

Continuous Financial Market

• forces us to be more specific

(Ω,A,A, P ) - filtered probability spaceA = (At)t≥0 - filtrationAt - information at time tEt(·) = E(·|At) - conditional expectation

• d sources of continuous traded uncertainty

W 1,W 2, . . . ,W d, d ∈ 1, 2, . . .

independent standard Brownian motions

91

Primary Security Accounts

Sjt - jth primary security account at time t,

j ∈ 0, 1, . . . , d

cum-dividend share value or savings account value,

dividends or interest are reinvested

• vector process of primary security accounts

S = St = (S0t , . . . , S

dt )

⊤, t ∈ [0, T ]

92

• assume unique strong solution of SDE

dSjt = Sj

t

(ajt dt+

d∑k=1

bj,kt dW kt

)

t ∈ [0,∞), Sj0 > 0, j ∈ 1, 2, . . . , d

• predictable, integrable appreciation rate processes aj

• predictable, square integrable volatility processes bj,k

93

• savings account

S0t = exp

∫ t

0

rs ds

predictable, integrable short rate process

r = rt, t ∈ [0,∞)

94

• Market price of risk

θt = (θ1t , θ2t , . . . , θ

dt )

unique invariant of the market

solution of relation

bt θt = at − rt 1

whereat = (a1

t , a2t , . . . , a

dt )

1 = (1, 1, . . . , 1)⊤

95

Assumption:

Volatility matrix bt = [bj,kt ]dj,k=1 is invertible

=⇒

• market price of risk

θt = b−1t (at − rt 1)

96

• can rewrite jth primary security account SDE

dSjt = Sj

t

rt dt+

d∑k=1

bj,kt (θkt dt+ dW kt )

t ∈ [0,∞), j ∈ 1, 2, . . . , d

97

• strategy

δ = δt = (δ0t , . . . , δdt )

⊤, t ∈ [0, T ]

predictable and S-integrable,

δjt number of units of jth primary security account

• portfolio

Sδt =

d∑j=0

δjt Sjt

98

• Sδ self-financing⇐⇒

dSδt =

d∑j=0

δjt dSjt

• changes in the portfolio value only due to gains from trading,

• self-financing in each denomination

99

• jth fraction

πjδ,t = δjt

Sjt

Sδt

j ∈ 0, 1, . . . , d

d∑j=0

πjδ,t = 1

100

• portfolio SDE

dSδt = Sδ

t

(rt dt+

d∑k=1

bkδ,t(θkt dt+ dW k

t

))

with kth portfolio volatility

bkδ,t =d∑

j=0

πjδ,t b

j,kt

101

• logarithm of strictly positive portfolio

d ln(Sδt ) = gδt dt+

d∑k=1

bkδ,t dWkt

with growth rate

gδt = rt +

d∑k=1

bkδ,t

(θkt −

1

2bkδ,t

)

102

=⇒ maximize the growth rate

0 =∂gδt∂bkδ,t

= θkt − bkδ∗,t

=⇒ for each k ∈ 1, 2, . . . , d

θkt = bkδ∗,t=

d∑ℓ=1

πℓδ∗,t

bℓ,kt

=⇒θ⊤t = π⊤

δ∗,tbt

103

Since bt invertible =⇒

πδ∗,t = (π1δ∗,t, . . . , πd

δ∗,t)⊤

= (b−1t )⊤ θt

=⇒ Kelly portfolio, growth optimal portfolio, GOP,log-optimal portfolio, NP

dSδ∗t = Sδ∗

t

([rt +

d∑k=1

(θkt )2

]dt+

d∑k=1

θkt dWkt

)

finite

104

=⇒

• GOP

dSδ∗t = Sδ∗

t

(rt dt+

d∑k=1

θkt(θkt dt+ dW k

t

))

• general portfolio

dSδt = Sδ

t

rt dt+ d∑k=1

d∑j=0

πjδ,t b

j,kt

(θkt dt+ dW k

t

)

105

Benchmarked Portfolio

Sδt =

Sδt

Sδ∗t

Ito formula =⇒

dSδt = −Sδ

t

d∑k=1

d∑j=0

πjδ,t

(θkt − b

j,kt

)dW k

t

driftless =⇒ local martingale,“zero expected return locally”Local Efficient Market Hypothesissimilar to Fama (1965)

106

• nonnegative local martingale is supermartingale

=⇒ Kelly portfolio (GOP) is the NP

107

• NP benchmark for investing

• numeraire for pricing

• captures general market risk in risk management

• central in benchmark approach

108

Benchmark Approach

• provides much wider framework for modeling than classical APT

• can capture more phenomena relevant in real world

• contains as special cases classical approachese.g. APT, actuarial approach, CAPM, ...

109

Capital Asset Pricing Model

• risk premium of security V (t)

pV (t) = limh↓0

1

hEt

(V (t+ h)− V (t)

V (t)

)− rt

excess expected return

• NP

dSδ∗t = Sδ∗

t

((rt + pSδ∗ (t)) dt+

d∑k=1

θkt dWkt

)with volatility

|θt| =

√√√√ d∑k=1

(θkt )2 =

√pSδ∗ (t)

110

• underlying security

dSt = St

(rt dt+

d∑k=1

σkt

(θkt dt+ dW k

t

))

risk premium

pS(t) =d∑

k=1

σkt θ

kt

=d

dt

[ln(S), ln(Sδ∗)

]t

= limh↓0

1

hEt

((St+h − St

St

)(Sδ∗t+h − S

δ∗t

Sδ∗t

))

111

• portfolio

dSδt = Sδ

t

(rt dt+ π1

δ,t

d∑k=1

σkt

(θkt dt+ dW k

t

))

risk premium

pSδ(t) = π1δ,t

d∑k=1

σkt θ

kt

= limh↓0

1

hEt

((Sδt+h − Sδ

t

Sδt

)(Sδ∗t+h − S

δ∗t

Sδ∗t

))

=d

dt

[ln(Sδ), ln(Sδ∗)

]t

112

Assumption: Market portfolio SδMP is diversified and approximates NP

SδMPt ≈ Sδ∗

t .

113

• systematic risk parameter beta

βSδ(t) =ddt

[ln(Sδ), ln(SδMP)

]t

ddt

[ln(SδMP)

]t

=⇒

βSδ(t) ≈ddt

[ln(Sδ), ln(Sδ∗)

]t

ddt

[ln(Sδ∗)

]t

=pSδ(t)

pSδ∗ (t)≈

pSδ(t)

pSδMP (t)

114

=⇒

• fundamental CAPM relation follows directly

pSδ(t) ≈ βSδ(t) pSδMP (t)

115

• CAPM relationship still holds for SδMP with SDE

dSδMPt = SδMP

t

(rt dt+ πt

d∑k=1

θkt(θkt dt+ dW k

t

))

combination of savings account and NP, two fund separation

• βSδ(t) =ddt

[ln(Sδ), ln(SδMP)

]t

ddt

[ln(SδMP)]t

=π1δ,t

∑dk=1 σ

kt θ

kt πt

(πt)2∑d

k=1

(θkt)2

=π1δ,t

∑dk=1 σ

kt θ

kt

πt

∑dk=1

(θkt)2 =

pSδ(t)

pSδMP (t)

116

no utility function involved,no principal agent,no equilibrium assumption

follows simply by Ito calculus and BA

=⇒

• capital asset pricing model (CAPM)

Sharpe (1964), Lintner (1965),

Mossin (1966) and Merton (1973b)

117

Examples for Beta:

• savings accountβS0(t) = 0

• underlying security

βS(t) =

∑dk=1 σ

kt θ

kt

|θt|2

• NPβSδ∗ (t) = 1

118

• portfolio

βSδ(t) =π1δ,t

∑dk=1 σ

kt θ

kt

|θt|2

• If Sδ involves only diversifiable uncertainty, which is not in NP,

then it has zero beta

=⇒

βSδ(t) = 0

119

Portfolio Optimization

• Kelly portfolio (GOP, NP) best long term investment

Kelly (1956), Latane (1959), Breiman (1961),Hakansson (1971b), Thorp (1972)

• optimal portfolio separated into two funds

NP and savings accountTobin (1958), Sharpe (1964)

120

• mean-variance efficient portfolio

Markowitz (1959)

• intertemporal capital asset pricing model

Merton (1973a)

121

Discounted Portfolio

• strictly positive portfolio Sδ ∈ V+

• discounted value

Sδt =

Sδt

S0t

=⇒

• SDE

dSδt =

d∑k=1

ψkδ,t

(θkt dt+ dW k

t

)with kth diffusion coefficient

ψkδ,t =

d∑j=1

δjt Sjt b

j,kt

122

• discounted drift

αδt =

d∑k=1

ψkδ,t θ

kt

link to macro economy

• fluctuations

Mt =

d∑k=1

∫ t

0

ψkδ,s dW

ks

=⇒

Sδt = Sδ

0 +

∫ t

0

αδs ds+ Mt

123

• aggregate diffusion coefficient (deviation)

γδt =

√√√√ d∑k=1

(ψk

δ,t

)2

=⇒ aggregate volatility

bδt =γδt

Sδt

124

Locally Optimal Portfolios

Definition

Sδ ∈ V+ locally optimal, if for all t ∈ [0,∞) and Sδ ∈ V+ with

γδt = γ δ

t

almost surely:

αδt ≤ α

δt .

generalization of mean-variance optimality

Markowitz (1952, 1959)

125

Sharpe Ratio

Sharpe (1964, 1966)

• risk premium

pSδ(t) =αδ

t

Sδt

• aggregate volatility bδt

• Sharpe ratio

sδt =pSδ(t)

bδt=αδ

t

γδt

=mean

deviation

126

• total market price of risk

|θt| =

√√√√ d∑k=1

(θkt)2

Assumption:0 < |θt| <∞

and

π0δ∗,t= 1

almost surely.

127

• Portfolio Selection TheoremFor any Sδ ∈ V+ it follows Sharpe ratio

sδt ≤ |θt|,

where equality when Sδ locally optimal=⇒

dSδt = Sδ

t

bδt|θt|

d∑k=1

θkt(θkt dt+ dW k

t

),

=⇒ fractions

πjδ,t =

bδt|θt|

πjδ∗,t

Markowitz (1959), Sharpe (1964), Merton (1973a)Khanna & Kulldorff (1999), Platen (2002)Sharpe ratio maximization

128

Proof of Portfolio Selection Theorem

Lagrange multiplier λ

consider

L(ψ1δ , . . . , ψ

dδ , λ) =

d∑k=1

ψkδ θ

k + λ

((γ δ)2−

d∑k=1

(ψk

δ

)2)

suppressing time dependence

first-order conditions

∂L(ψ1δ , . . . , ψ

dδ , λ)

∂ψkδ

= θk − 2λψkδ = 0

for all k ∈ 1, 2, . . . , d as well as

129

∂L(ψ1δ , . . . , ψ

dδ , λ)

∂λ=(γ δ)2−

d∑k=1

(ψk

δ

)2= 0

=⇒ locally optimal portfolio S(δ) must satisfy

ψkδ=θk

for all k ∈ 1, 2, . . . , d.

Thend∑

k=1

(ψk

δ

)2=(γ δ)2

130

=⇒ (γ δ)2

=d∑

k=1

(ψk

δ

)2=

∑dk=1(θ

k)2

4λ2

we have |θ| =√∑d

k=1(θk)2 > 0,

then

ψkδ=γ δ

|θ|θk

for all k ∈ 1, 2, . . . , d

131

=⇒

αδt = γ δ

t

|θt|2

|θt|= γ δ

t |θt|

dSδt = γ δ

t

d∑k=1

θkt|θt|

(θkt dt+ dW kt )

ψkδ,t

=d∑

j=1

δjt Sjt b

j,kt = S

(δ)t

d∑j=1

πj

δ,tbj,kt =

γ δt

|θt|θkt = S

(δ)t bδt

θkt|θt|

invertibility of volatility matrix=⇒

πj

δ,t=

bδt|θt|

d∑k=1

θkt b−1 j,kt

132

Two Fund Separation

• locally optimal portfolio

fraction of wealth in the NP

bδt|θt|

=1− π0

δ,t

1− π0δ∗,t

remainder in savings account

π0δ,t = 1−

bδt|θt|

(1− π0

δ∗,t

)

also known as fractional Kelly strategy:

Kelly (1956), Latane (1959), Thorp (1972), Hakansson & Ziemba (1995)

133

Risk Aversion Coefficient

Jδt =

1− π0δ∗,t

1− π0δ,t

=|θt|bδt

Pratt (1964), Arrow (1965)

• discounted locally optimal portfolio

dSδt = Sδ

t

1

Jδt

|θt| (|θt| dt+ dWt),

where

dWt =

d∑k=1

θkt|θt|

dW kt

1Jδt

fraction in the NP

134

Capital Market Line

• expected rate of return

aδt = rt + pSδ(t)

• for a locally optimal portfolio

aδt = rt + |θt| bδt

• portfolio process at the capital market line

has fraction 1Jδt=

bδt

|θt|in NP

fractional Kelly strategy

135

Markowitz Efficient Frontier

• aggregate volatility

bδt =1− π0

δ,t

1− π0δ∗,t

|θt|

DefinitionMarkowitz efficient portfolio has expected rate of return on efficient frontierif

aδt = rt +

√(bδt )

2 |θt|.

136

Theorem Any locally optimal portfolio Sδ is Markowitz efficient port-folio.

pSδ(t) =1− π0

δ,t

1− π0δ∗,t

|θt|2 = bδt |θt|

Sharpe ratio maximizationrisk attitude expressed via Jδ

t = |θt|bδt

short term view

137

-0.04 0 0.04 0.08 0.12

0.05

0.09

-0.04 0 0.04 0.08 0.12

0

0.05

0.09

Efficient frontier

138

Efficient Growth Rates

• efficient growth rate frontier

of locally optimal portfolio

gδt = rt +

√|bδt |2 |θt| −

1

2|bδt |

2 = rt +|θt|2

Jδt

(1−

1

2 Jδt

)

• maximum

gδ∗t = rt +

1

2|θt|2

• long term view

139

0 0.04 0.08 0.12 0.16

0.05

0 0.04 0.08 0.12 0.16

0

0.05

Efficient growth rates

140

Market Portfolio

SδMPt =

n∑ℓ=1

Sδℓt

portfolio of tradable wealth of ℓth investor Sδℓ

Remark:

If each investor forms a nonnegative, locally optimal portfolio with her or his

total tradable wealth, then MP is locally optimal .

141

dSδMPt =

n∑ℓ=1

dSδℓt

=n∑

ℓ=1

(Sδℓt − δ0ℓ

)(1− π0

δ∗,t

) d∑k=1

θkt (θkt dt+ dW kt )

= SδMPt

(1− π0

δMP,t

)(1− π0

δ∗,t

) d∑k=1

θkt (θkt dt+ dW kt )

• CAPM relationship still holds when MP locally optimal

142

Practical Feasibility ofSample Based Markowitz Mean-Variance Approach:

• NP theoretically known for given model

• Markowitz (1952)

• Best & Grauer (1991)

• DeMiguel, Garlappi & Uppal (2009)

practical applicationrequires for 50 assets observation window of about 500 years

• not realistic to be applied

• theoretically can be reconciled under strong assumptions(MP locally optimal)

143

Maximum Drawdown Constrained Portfolios

X - set of nonnegative continuous discounted portfolios

• running maximumforX = Xt, t ≥ 0 ∈ X

X∗t = sup

u∈[0,t]

Xu

• drawdownX∗

t −Xt

144

• relative drawdownXt

X∗t

• maximum relative drawdown

• express attitude towards risk by restricting toX ∈ αX , where

Xt

X∗t

≥ α ,α ∈ [0, 1)

pathwise criterion

145

• drawdownforX ∈ αXXt ≥ αX∗

t

=⇒X∗

t −Xt ≤ (1− α)X∗t

146

• maximum drawdown constrained portfolioα ∈ [0, 1),X ∈ X

αXt = α(X∗t )

1−α + (1− α)Xt(X∗t )

−α

= 1 +

∫ t

0

(1− α)(X∗s )

−αdXs ∈ [αX∗t , (X

∗t )

1−α]

Grossman & Zhou (1993), Cvitanic & Karatzas (1994),Kardaras, Obloj & Pl. (2012)

147

=⇒ SDEdαXt

αXt

= απt

dXt

Xt

fraction

απt = 1−(1− α)Xt

X∗t

α+ (1− α)Xt

X∗t

model independentdepends only on Xt

X∗t

and ααSδ∗

t - locally optimal portfolio

148

1871 1899 1927 1955 1983 2011−1

0

1

2

3

4

5

6

ln(X)

ln(X*)

logarithm of discounted S&P500 and its running maximum

149

1871 1899 1927 1955 1983 20110

0.2

0.4

0.6

0.8

1

1.2

relative drawdown

Relative drawdown of discounted S&P500

150

1871 1899 1927 1955 1983 2011−0.5

0

0.5

1

1.5

2

2.5

ln(αX)

ln(αX*)

Logarithm of maximum drawdown constrained portfolio, α = 0.6

151

1871 1899 1927 1955 1983 20110

0.2

0.4

0.6

0.8

1

1.2

relative drawdown

Relative drawdown for drawdown constrained portfolio, α = 0.6

152

1871 1899 1927 1955 1983 20110

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fraction in X

Fraction of wealth in S&P500 for α = 0.6

153

1871 1899 1927 1955 1983 20110

0.002

0.004

0.006

0.008

0.01

0.012

0.014

relative hedge error

Relative hedge error, α = 0.6, monthly hedging

154

• Long term growth rateFor α ∈ [0, 1),X ∈ αX

limt→∞

(log(Xt)

Gt

)≤ 1− α = lim

t→∞

(log(αSδ∗

t )

Gt

)

log(Sδ∗t ) = Gt +

∫ t

0

|θs|dWs

Kardaras, Obloj & Pl. (2012)

155

• asymptotic maximum long term growth rate

limt→∞

1

tlog(αSδ∗

t ) = (1− α) limt→∞

1

tlog(Sδ∗

t )

αg = (1− α)g

restricted drawdown =⇒ reduced maximum growth ratelong term view with short term attitude towards riskrealistic alternative to Markowitz mean-variance approachand utility maximization

156

1871 1900 1928 1956 1984 2012−1

0

1

2

3

4

5

6

Logarithm of drawdown constrained portfolios

157

1879 1906 1932 1959 1985 2012−0.01

0

0.01

0.02

0.03

0.04

0.05

Long term growth of drawdown constrained portfolios

158

Expected Utility Maximization

• utility function U(·), U ′(·) > 0 U ′′(·) < 0

• examples

power utility

U(x) =1

γxγ

for γ = 0 and γ < 1

log-utilityU(x) = ln(x)

159

5 10 15 20x

-15

-10

-5

5

U

Examples for power utility (upper graph) and log-utility (lower graph)

160

• assume S0 is scalar Markov process

• maximize expected utility

vδ = maxSδ∈V+

S0

E(U(SδT

) ∣∣∣A0

)

V+S0

set of strictly positive, discounted, fair portfolios

Sδ0 = S0 > 0

161

Theorem

Benchmarked, expected utility maximizing portfolio:

Sδt = u(t, S0

t ) = E(U ′−1

(λ S0

T

)S0T

∣∣∣At

),

λ s.t. S0 = Sδ0 S

δ∗0 = u(0, S0)S

δ∗0

two fund separation with risk aversion coefficient

J δt =

1

1− S0t

u(t,S0t )

∂u(t,S0t )

∂S0t

.

=⇒ locally optimal portfolio

162

Proof:

vδ = E(U(Sδ

T ))− λ

(E(Sδ

T )− Sδ0

)= E

(F (Sδ

T ))

F (SδT ) = U(Sδ

T )− λ(SδT

Sδ∗T

− Sδ0

)

F ′(SδT ) = U ′(Sδ

T )−λ

Sδ∗T

= 0

163

=⇒

U ′(SδT ) =

λ

Sδ∗T

SδT = U

′−1

Sδ∗T

)= U

′−1(λS0T )

SδT = U

′−1(λS0T )S

0T

164

• log-utility function U(x) = ln(x)

U ′(x) =1

x

U ′−1(y) =1

y

U ′′(x) = −1

x2

utility concave

u(t, S0t ) = E

(U ′−1

(λ S0

T

)S0T

∣∣∣At

)= E

(1

λ S0T

S0T

∣∣∣At

)=

1

λ

Lagrange multiplier

165

λ =Sδ∗0

S0

risk aversion coefficientJ δt = 1

• expected log-utility

vδ = E(ln(Sδ∗T

) ∣∣∣A0

)= ln(λ) + ln(S0) +

1

2

∫ T

0

E((θ(s, Sδ∗

s ))2 ∣∣∣A0

)ds

if local martingale part forms a martingale

166

• power utility

U(x) =1

γxγ

for γ < 1, γ = 0

U ′(x) = xγ−1

U ′−1(y) = y1

γ−1

U ′′(x) = (γ − 1)xγ−2

concave

u(t, S0t ) = E

( λ

Sδ∗T

) 1γ−1

1

Sδ∗T

∣∣∣∣At

= λ1

γ−1 E

((Sδ∗T

) γ1−γ

∣∣∣At

)

167

Sδ∗ geometric Brownian motion

u(t, S0t ) = λ

1γ−1

(Sδ∗t

) γ1−γ

×E(exp

γ

1− γ

(θ2

2(T − t) + θ (WT −Wt)

) ∣∣∣∣At

)

= λ1

γ−1(Sδ∗t

) γ1−γ exp

θ2

2

γ

(1− γ)2(T − t)

168

Lagrange multiplier

λ = Sγ−10 Sδ∗

0 exp

θ2

2

γ

1− γT

S0t = (Sδ∗

t )−1

∂u(t, S0t )

∂S0=u(t, S0

t )

S0t

γ

γ − 1

risk aversion coefficientJ δt = 1− γ

expected utility

vδ = E

(1

γ

(SδT

)γ ∣∣∣∣A0

)= exp

−θ2

2

γ

1− γT

(S0)

γ

169

Various Approaches to Asset Pricing

• Actuarial Pricing Approach (APA)

• Capital Asset Pricing Model (CAPM)

• Arbitrage Pricing Theory (APT)

• Utility Indifference Pricing

• Benchmark Approach (BA)

170

Classical

Law of One Price

“All replicating portfolios of a payoff have the same price!”

Debreu (1959), Sharpe (1964), Lintner (1965),

Merton (1973a, 1973b), Ross (1976), Harrison & Kreps (1979),

Cochrane (2001), . . .

will be, in general, violated under the benchmark approach.

171

-8

-7

-6

-5

-4

-3

-2

-1

0

1

1930 1940 1950 1960 1970 1980 1990 2000

time

ln(savings bond)ln(fair zero coupon bond)

ln(savings account)

Logarithms of savings bond, fair zero coupon bond and savings account

172

• benchmarked value

Sδt =

Sδt

Sδ∗t

Supermartingale Property

For nonnegative Sδ

Sδt ≥ Et

(Sδs

)0 ≤ t ≤ s <∞

Sδ supermartingale

173

• One needs consistent pricing concept

• All benchmarked nonnegative securities are supermartingales

(no upward trend)

174

Definition Price is fair if, when benchmarked, forms martingale

(no trend)

Sδt = Et

(Sδs

)0 ≤ t ≤ s <∞.

175

Lemma The minimal nonnegative supermartingale that reaches a givenbenchmarked contingent claim is a martingale.

see Revuz & Yor (1999)

176

0

0.02

0.04

0.06

0.08

0.1

0.12

1930 1940 1950 1960 1970 1980 1990 2000

time

benchmarked savings bondbenchmarked fair zero coupon bond

Benchmarked savings bond and benchmarked fair zero coupon bond

177

Benchmark Approach:

Law of the Minimal Price

Pl. (2008)

Theorem If a fair portfolio replicates a nonnegative payoff, then this rep-resents the minimal replicating portfolio.

• least expensive

• minimal possible hedge

• economically correct price in a competitive market

178

• contingent claim

HT

E0

(HT

Sδ∗T

)<∞

• SδHt fair if

SδHt =

SδHt

Sδ∗t

= Et

(HT

Sδ∗T

)

• real world expectationbest performing portfolio as numeraire

=⇒ Direct link with real world and economy !

179

Law of the Minimal Price =⇒

Corollary

Minimal price for replicableHT is fair and given by

real world pricing formula

SδHt = Sδ∗

t Et

(HT

Sδ∗T

).

• Du & Pl. (2013) benchmarked risk minimizationfor nonreplicable claims

180

• most pricing concepts become unified and generalized by real worldpricing

=⇒

actuarial pricingrisk neutral pricingpricing with stochastic discount factorpricing with numeraire changepricing with deflatorpricing with state pricing densitypricing with pricing kernelutility indifference pricingpricing with numeraire portfolioclassical risk minimizationbenchmarked risk minimization

181

• Equivalent to risk neutral pricing are pricing via:

stochastic discount factor, Cochrane (2001);

deflator, Duffie (2001);

pricing kernel, Constantinides (1992);

state price density, Ingersoll (1987);

numeraire portfolio as in Long (1990)

182

Actuarial Pricing

WhenHT independent of Sδ∗T

=⇒ rigorous derivation of

• actuarial pricing formula

SδHt = P (t, T )Et(HT )

with zero coupon bond as discount factor

P (t, T ) = Sδ∗t Et

(1

Sδ∗T

)

183

Risk Neutral Pricing

• real world pricing formula =⇒

SδH0 = E0

(ΛT

S00

S0T

HT

)Radon-Nikodym derivative (density)

Λt =S0t

S00

supermartingale

1 = Λ0 ≥ E0(ΛT )

=⇒

SδH0 ≤

E0

(ΛT

S00

S0THT

)E0(ΛT )

184

similar for any numeraire (here S0 savings account)

185

0

10

20

30

40

50

60

70

80

90

100

1930 1940 1950 1960 1970 1980 1990 2000

time

Discounted S&P500 total return index

186

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1930 1940 1950 1960 1970 1980 1990 2000

time

Radon-Nikodym derivativeTotal RN-Mass

Radon-Nikodym derivative and total mass of putative risk neutral measure

187

• special case when savings account is fair:

=⇒ ΛT = dQdP

forms martingale; E0(ΛT ) = 1;

equivalent risk neutral probability measureQ exists;

Bayes’ formula =⇒risk neutral pricing formula

SδH0 = EQ

0

(S00

S0T

HT

)

Harrison & Kreps (1979), Ingersoll (1987),

Constantinides (1992), Duffie (2001), Cochrane (2001), . . .

• otherwise “risk neutral price” ≥ real world price

188

-1

0

1

2

3

4

5

6

7

8

9

1930 1940 1950 1960 1970 1980 1990 2000

time

ln(index)ln(savings account)

ln(S&P500 accumulation index) and ln(savings account)

189

Risk Neutral Pricing under BS Model

θt = θ, at = a, rt = r, σt = σ

Drifted Wiener Process

• drifted Wiener process Wθ

Wθ(t) = Wt + θ t

• market price of risk

θ =a− rσ

190

• underlying security

dSt = (a− σ θ)St dt+ σ St (θ dt+ dWt)

= (a− σ θ)St dt+ σ St dWθ(t)

= r St dt+ σ St dWθ(t)

St = S0 exp

(r −

1

2σ2

)t+ σWθ(t)

Wθ is not a Wiener process under the real world probability P ,

however, will be under some Pθ

191

0

5

10

15

20

25

0 5 10 15 20 25 30 35

time

Simulated primary security accounts.

192

• Radon-Nikodym derivative

Λθ(T ) =dPθ

dP=S0T

S00

• risk neutral measure Pθ

Pθ(A) =

∫Ω

1A dPθ(ω) =

∫A

dPθ(ω)

dP (ω)dP (ω)

=

∫A

Λθ(T ) dP (ω)

for all subsetsA ∈ Ω

193

Definition P is equivalent to P if both have the same sets

of events that have probability zero.

• equivalence of P and Pθ

fundamental for risk neutral pricing

Key Risk Neutral assumption:

Λθ is (A, P ) martingale

194

• under BS model

Radon-Nikodym derivative

Λθ(t) =S0t

S00

is (A, P )-martingale,

=⇒ there exists equivalent risk neutral probability measure Pθ

for BS model

195

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35

time

Benchmarked savings account under BS model, martingale.

196

Risk Neutral Measure Transformation

dPθ

dP

∣∣∣∣At

= Λθ(t) = exp

1

2θ2 t− θWt

• total risk neutral measure at t = 0:

dPθ

dP

∣∣∣∣A0

= E(Λθ(T ) | A0) = Λθ(0) = 1

=⇒ Pθ is a probability measure

197

Let us show thatWθ is Wiener process under Pθ:

For fixed y ∈ ℜ,

t ∈ [0, T ] and s ∈ [0, t]

letA be the event

A = ω ∈ Ω : Wθ(t, ω)−Wθ(s, ω) < y

=⇒

A = ω ∈ Ω : Wt(ω)−Ws(ω) < y − θ (t− s)

198

Eθ denoting expectation under Pθ =⇒

Pθ(A) = Eθ(1A|A0) = E

(dPθ

dP

∣∣∣∣AT

1A

∣∣∣∣A0

)

= E(Λθ(T ) 1A|A0) = E

(Λθ(t) 1A

Λθ(T )

Λθ(t)

∣∣∣∣A0

)

= E

(Λθ(t) 1AE

(Λθ(T )

Λθ(t)

∣∣∣∣At

) ∣∣∣∣A0

)

= E (Λθ(t) 1A|A0) = E

(Λθ(s)

Λθ(t)

Λθ(s)1A

∣∣∣∣A0

)

= E (Λθ(s)|A0) E

(Λθ(t)

Λθ(s)1A

∣∣∣∣A0

)

= E

(Λθ(t)

Λθ(s)1A

∣∣∣∣A0

)199

since y = Wt −Ws is Gaussian ∼ N (0, t− s) under P =⇒

Pθ(A) = E

(Λθ(t)

Λθ(s)1A

)

=

∫ y−θ(t−s)

−∞exp

−θ2

2(t− s)− θ y

1√

2π (t− s)

exp

y2

2 (t− s)

dy

=

∫ y−θ(t−s)

−∞

1√2π (t− s)

exp

(y + θ (t− s))2

2 (t− s)

dy

=

∫ y

−∞

1√2π (t− s)

exp

z2

2 (t− s)

dz

for z = y + θ(t− s)

200

=⇒

Theorem (Girsanov) Under the above BS model the process

Wθ = Wθ(t) = Wt + θ t, t ≥ 0

is a standard Wiener process in the filtered probability space (Ω,AT ,A, Pθ).

• Wθ is (A, Pθ)-Wiener process

• simply a transformation of variable

(not always possible, exploits here BS model)

201

Real World Pricing =⇒ Risk Neutral Pricing

V (0, S0) = Sδ∗0 E

(H(ST )

Sδ∗T

∣∣∣∣A0

)

= E

(S0T

S00

H(ST )

S0T

∣∣∣∣A0

)

= E

(Λθ(T )

(H(ST )

S0T

) ∣∣∣∣A0

)

≤E(Λθ(T )

H(ST )S0

T

∣∣A0

)E(Λθ(T )

∣∣A0

)

202

=⇒ Risk Neutral Pricing if Λθ is (A, P )-martingale

V (0, S0) = E

(exp

−θ2

2T − θWT

exp−r TH(ST )

∣∣∣A0

)= exp−r T

∫ ∞

−∞H

(S0 exp

(a−

1

2σ2

)T + σ y

)× exp

−θ2

2T − θ y

1√TN ′(y√T

)dy

= exp−r T∫ ∞

−∞

(H

(S0 exp

(r −

1

2σ2

)T + σ z

))×

1√TN ′(z√T

)dz

= exp−r TEθ

(H(ST )

∣∣A0

)= Eθ

(H(ST )

S0T

∣∣∣A0

)z = y + θ T =⇒ Eθ - expectation with respect to Pθ

203

Risk Neutral SDEs under BS model

• discounted underlying security price

dSt = σ St dWθ(t)

driftless under Pθ, σS ∈ L2T =⇒

(A, Pθ)-martingale

204

• discounted option price

dV (t, St) =∂V (t, St)

∂Sσ St dWθ(t)

driftless under Pθ, ∂V∂SσS ∈ L2

T =⇒

(A, Pθ)-martingale

• discounted savings account S0t = 1 =⇒ (A, Pθ)-martingale

205

• discounted portfolio

dSδt = d(Sδ∗

t Sδt )

= Sδt π

1δ(t)σ (θ dt+ dWt)

= Sδt π

1δ(t)σ dWθ(t)

(A, Pθ)-local martingale

• if Sδ π1δ δ = δ1 S σ ∈ L2

T =⇒ Sδ is an (A, Pθ)-martingale,

=⇒ risk neutral pricing formula holds=⇒

Sδt = Eθ

(SδT

∣∣At

)= Eθ

(SδT

S0T

∣∣∣∣At

)• Sδ∗ is (A, Pθ)-martingale under BS model

206

• strict supermartingale portfolio under BS model

if Zt strict (A, Pθ)-supermartingale, independent of Sδ∗t and

Sδt = Sδ∗

t Zt

=⇒ Sδt strict (A, Pθ)-supermartingale

• risk neutral pricing formula does not hold for such Sδt

Sδt > Eθ

(SδT

∣∣At

)for T > t

=⇒ not all discounted portfolios are (A, Pθ)-martingales

even when Radon-Nikodym derivative Λθ is (A, P )-martingale

207

Change of Variables

• we performed a change of variables fromWt toWθ(t)

W Wiener processes under P

Wθ Wiener processes under Pθ

• relies on existence of an

equivalent risk neutral probability measure Pθ

208

General Girsanov Transformation

• m-dimensional standard Wiener process

W = W t = (W 1t , . . . ,W

mt )⊤, t ∈ [0, T ]

(Ω,AT ,A, P )

• A-adapted, predictablem-dimensional stochastic process

θ = θt = (θ1t , . . . , θmt )⊤, t ∈ [0, T ]

∫ T

0

m∑i=1

(θit)2 dt <∞

209

• assume Radon-Nikodym derivative

Λθ(t) = 1−m∑i=1

∫ t

0

Λθ(s) θis dW

is

= exp

−∫ t

0

θ⊤s dW s −1

2

∫ t

0

θ⊤s θs ds

<∞

forms (A, P )-martingale

210

• Λθ (A, P )-martingale

=⇒E(Λθ(t) | As) = Λθ(s)

for t ∈ [0, T ] and s ∈ [0, t]

=⇒E(Λθ(t) | A0) = Λθ(0) = 1

211

• define a candidate risk neutral measure Pθ with

dPθ

dP

∣∣∣∣AT

= Λθ(T )

by setting

Pθ(A) = E(Λθ(T ) 1A)

= Eθ(1A)

• since Λθ is an (A, P )-martingale

Pθ(Ω) = E(Λθ(T )) = E(Λθ(T )

∣∣A0

)= Λθ(0) = 1

=⇒ Pθ is a probability measure

212

Girsanov Theorem

Theorem (Girsanov) If a given strictly positive Radon-Nikodymderivative process Λθ is an (A, P )-martingale, then the m-dimensionalprocess Wθ = Wθ(t), t ∈ [0, T ], given by

Wθ(t) = W t +

∫ t

0

θs ds

for all t ∈ [0, T ], is an m-dimensional standard Wiener process on thefiltered probability space (Ω,AT ,A, Pθ).

• W is (A, P )-Wiener process

Wθ is (A, Pθ)-Wiener process

213

Novikov Condition

When is the strictly positive (A, P )-local martingale Λθ an (A, P )-martingale?

• a sufficient condition is the Novikov condition

Novikov (1972)

E

(exp

1

2

∫ T

0

|θ⊤s θs| ds)

<∞

(is satisfied for the BS model)

• for other sufficient conditions see Revuz & Yor (1999)

214

Bayes’s Theorem

Theorem (Bayes) Assume that Λθ is an (A, P )-martingale, thenfor any given stopping time τ ∈ [0, T ] and any Aτ -measurable randomvariable Y , satisfying the integrability condition

Eθ(|Y |) <∞,

one has the Bayes rule

Eθ(Y | As) =E(Λθ(τ )Y | As)

E(Λθ(τ ) | As)

for s ∈ [0, τ ].

215

Proof of Bayes’s Theorem (*)

For eachAτ -measurable random variable Y and a setA ∈ As

with s ∈ [0, τ ], τ ≤ T

1AEθ (Y |As) = Eθ

(1A Y

∣∣As

)= E

(1A Y Λθ(T )

∣∣As

)= E (1A Y Λθ(τ )|As) = E (1AE (Y Λθ(τ )|As) |As)

= E

(Λθ(s)

1A

Λθ(s)E (Y Λθ(τ ) | As)

∣∣∣∣As

)

= Eθ

(1A

Λθ(s)E (Y Λθ(τ ) | As)

∣∣∣∣As

)

= Eθ

(1A

E (Λθ(τ )Y | As)

E (Λθ(τ ) | As)

∣∣∣∣As

)

= 1A

E (Λθ(τ )Y | As)

E (Λθ(τ ) | As).

216

Change of Numeraire Technique

Geman, El Karoui & Rochet (1995)

Jamshidian (1997)

• numeraireSδ = Sδ

t , t ∈ [0, T ]

normalizes all other portfolios

• may lead to simplifications in calculations

• relative price of a portfolioSδt

Sδt

217

Self-financing under Numeraire Change

Sδt = δ0t S

0t + δ1t St

dSδt = δ0t dS

0t + δ1t dSt

dSδt = δ0t dS

0t + δ1t dSt

Ito formula =⇒

218

d

(Sδt

Sδt

)=

1

Sδt

dSδt + Sδ

t d

(1

Sδt

)+ d

[1

Sδ, Sδ

]t

= δ0t

(1

Sδt

dS0t + S0

t d

(1

Sδt

))

+ δ1t

(1

Sδt

dSt + St d

(1

Sδt

)+ d

[1

Sδ, S

]t

)

[X,Y ]t ≈it∑

i=0

(Xti+1

−Xti

) (Yti+1

− Yti

)covariation

219

Ito formula for

S0t

Sδt

andSt

Sδt

=⇒

d

(Sδt

Sδt

)= δ0t d

(S0t

Sδt

)+ δ1t d

(St

Sδt

)

=⇒

• in denomination of another numeraire always self-financing

220

Numeraire Pairs

• numeraire pair (Sδ, Pθδ)

real world pricing formula:

St = E

(Sδ∗t

Sδ∗T

ST

∣∣∣∣At

)

existence of GOP

=⇒ numeraire pair (Sδ∗ , P )

221

if Λθ is (A, P )-martingale =⇒

• risk neutral pricing formula:

St = Eθ

(S0t

S0T

ST

∣∣∣∣At

)

=⇒ numeraire pair (S0, Pθ)

222

• for fair price process S

from real world pricing formula

St

Sδ∗t

= E

(ST

Sδ∗T

∣∣∣∣At

)

=⇒ for any strictly positive numeraire Sδ

St

Sδt

= E

(Sδ∗t

Sδt

SδT

Sδ∗T

ST

SδT

∣∣∣∣At

)

= E

(Λθδ

(T )

Λθδ(t)

ST

SδT

∣∣∣∣At

)

223

with benchmarked normalized numeraire

=⇒

Λθδ(t) =

Sδt

Sδ0

dΛθδ(t) = d

(Sδt

Sδ0

)

= Λθδ(t)(π1δ(t)σt − θt

)dWt

(A, P )-local martingale

=⇒ Radon-Nikodym derivative for candidate measure Pθδ

dPθδ

dP= Λθδ

(T )

224

• drifted Wiener process

dWθδ(t) = dWt + θδ(t) dt,

whereθδ(t) = θt − π1

δ(t)σt

• If Λθδis true (A, P )-martingale

=⇒ Pθδ equivalent to P and probability measure

allows to apply Girsanov transformation

=⇒ Wθδstandard Wiener process under Pθδ

=⇒ numeraire pair (Sδ, Pθδ)

225

Some Examples

• GOP Sδ∗ as numeraire =⇒ θδ∗(t) = 0

• savings account S0 as numeraire

π1δ(t) = 0 =⇒ θδ(t) = θt

• underlying security S as numeraire

π1δ(t) = 1 =⇒ θδ(t) = θt − σt

226

• unfair portfolio Sδt = Sδ∗

t Zt as numeraire

with Z an (A, P )-strict supermartingale, independent of Sδ∗

=⇒ Sδ is not an (A, P )-martingale

Girsanov Theorem can not be applied !

=⇒ If savings account is not fair,

then the change of numeraire approach is not applicable !

227

Pricing Formula for General Numeraire Sδ

V (0, S0) = E

(Sδ∗0

Sδ∗T

H(ST )

∣∣∣∣A0

)

= E

(Λθδ

(T )H(ST )

SδT

∣∣∣∣A0

)

the quantityΛθδ

(T )

SδT

=Sδ∗0

Sδ∗T

remains numeraire invariant

228

• if Λθδforms an (A, P )-martingale

Bayes’s Theorem =⇒

E

(Λθδ

(T )H(ST )

SδT

∣∣∣∣A0

)= Eθδ

(H(ST )

SδT

∣∣∣∣A0

)=⇒

pricing formula with general numeraire

V (0, S0) = Eθδ

(H(ST )

SδT

∣∣∣∣A0

)

• represents a transformation of variables in integration

• may provide computational advantages

229

Utility Indifference Pricing

discounted payoff H = HS0

T(not perfectly hedgable)

vδε,V = E

(U

((S0 − ε V )

SδT

S0

+ ε H

) ∣∣∣∣A0

)

• assume S0 is scalar diffusion

Definition Utility indifference price V s.t.

limε→0

vδε,V − vδ0,Vε

= 0

e.g. Davis (1997)

230

• Taylor expansion

vδε,V ≈ E

(U(SδT

)+ εU ′

(SδT

) (H −

V SδT

S0

) ∣∣∣∣A0

)

= vδ0,V + εE(U ′(SδT

)H∣∣∣A0

)− V εE

(U ′(SδT

) SδT

S0

∣∣∣∣A0

)

231

=⇒

• utility indifference price

V =E(U ′(SδT

)H∣∣∣A0

)E

(U ′(SδT

)Sδ

T

S0

∣∣∣A0

) =E(U ′(U ′−1

Sδ∗T

))H∣∣∣A0

)E

(U ′(U ′−1

Sδ∗T

))Sδ

T

S0

∣∣∣A0

)

=E(

H

Sδ∗T

∣∣∣A0

)1S0

S0

Sδ∗0

independent of U and independent of particular model =⇒

• real world pricing formula

V = Sδ∗0 E

(H

Sδ∗T

∣∣∣A0

)

232

Pricing via Hedging

• underlying security

S = St, t ∈ [0, T ]

dSt = at St dt+ σt St dWt

t ∈ [0, T ], S0 > 0

233

appropriate stochastic appreciation rate at

and volatility σt

Wiener processW = Wt, t ∈ [0, T ]

• savings account

dS0t = rt S

0t dt

t ∈ [0, T ], S00 = 1

appropriate stochastic short rate

234

• replicate payofff(ST ) ≥ 0

assumingE(f(ST )) <∞

• hedge portfolio

V (t, St) = δ0t S0t + δ1t St

δ0t units of savings account

δ1t units of underlying security

235

• hedging strategy

δ = δt = (δ0t , δ1t )

⊤, t ∈ [0, T ]

δ0 = δ0t , t ∈ [0, T ]

δ1 = δ1t , t ∈ [0, T ]

predictable processes

236

• replicating portfolio

V (T, ST ) = f(ST )

• SDE for hedge portfolio

dV (t, St) = δ0t dS0t + δ1t dSt

+S0t dδ

0t + St dδ

1t + d

[δ1, S

]t

237

• self-financing

portfolio changes are caused by gains from trade

dV (t, St) = δ0t dS0t + δ1t dSt

=⇒

self-financing condition:

S0t dδ

0t + St dδ

1t + d

[δ1, S

]t= 0

238

• discounted underlying security

St =St

S0t

t ∈ [0, T ]

Ito formula =⇒

dSt = (a− r) St dt+ σt St dWt

t ∈ [0, T ], S0 = S0

• discounted value function

V : [0, T ]× [0,∞)→ [0,∞)

V (t, St) =V (t, St)

S0t

239

• profit and loss (P&L)

Ct = price – gains from trade – initial price

• discounted P&L

Ct =Ct

S0t

= V (t, St)− Iδ1,S(t)− V (0, S0)

240

• discounted gains from trade

Iδ1,S(t) =

∫ t

0

δ1u dSu

=

∫ t

0

δ1u (a− r) Su du

+

∫ t

0

δ1u σ Su dWu

Iδ0,S0(t) =

∫ t

0

δ0u dS0u = 0

241

• initial payment

V (0, S0) = V (0, S0),

=⇒

C0 = 0

242

• identify hedging strategy δ

for which discounted P&L zero

Ct = 0

for all t ∈ [0, T ]

=⇒ perfect hedge

V (t, St) - replicating portfolio

243

• increments of discounted P&L

0 = Ct − Cs = V (t, St)− V (s, Ss)−∫ t

s

δ1u dSu

=

∫ t

s

[∂V (u, Su)

∂t+

1

2σ2u S

2u

∂2V (u, Su)

∂S2

+(au − ru) Su

(∂V (u, Su)

∂S− δ1u

)]du

+

∫ t

s

σu Su

(∂V (u, Su)

∂S− δ1u

)dWu

=⇒

244

• hedge ratio

δ1u =∂V (u, Su)

∂S

• discounted PDE

∂V (u, S)

∂t+

1

2σ2u S

2 ∂2V (u, S)

∂S2= 0

u ∈ [0, T ), S ∈ (0,∞)

with terminal condition

V (T, S) =f(S S0

T )

S0T

=f(S)

S0T

245

=⇒

• PDE

∂V (u, S)

∂t+ ru S

∂V (u, S)

∂S

+1

2σ2u S

2 ∂2V (u, S)

∂S2− ru V (u, S) = 0

u ∈ [0, T ), S ∈ (0,∞)

with terminal condition

V (T, S) = f(S)

• special boundary condition not specifiedPDE may not provide minimal possible price

246

=⇒

• units in savings account

δ0t =V (t, St)− δ1t St

S0t

= V (t, St)− δ1t St

• option price

V (t, St) = V (t, St)S0t

= δ0t S0t + δ1t St

t ∈ [0, T ]

247

=⇒ strategyδt = (δ0t , δ

1t )

such that0 = dCt = dV (t, St)− δ1t dSt

=⇒dV (t, St) = δ0t dS

0t + δ1t dSt

=⇒ self-financing

P&L vanishesCt = Ct S

0t = 0

248

for all t ∈ [0, T ]

If V (t, St) is not fair, then there may exist less expensive hedge portfo-lio!

249

Numeraire Invariance

V self-financing

dV (t, St) = d(V (t, St)S0t )

= S0t dV (t, St) + V (t, St) dS

0t + d[S0, V (·, S·)]t

= S0t δ

1t dSt + (δ0t + δ1t St) dS

0t + δ1t d[S

0, S]t

= δ0t dS0t + δ1t

(S0t dSt + St dS

0t + d[S0, S]t

)= δ0t dS

0t + δ1t d(S

0t St)

= δ0t dS0t + δ1t dSt

=⇒ V also self-financing

250

The Black-Scholes Formula

• solution cT,K(t, S) of PDE

with call payoff function

f(S) = (S −K)+

• at = a, σt = σ, rt = r

Black & Scholes (1973)Merton (1973a)

251

Black-Scholes Formula

cT,K(t, St) = StN(d1(t))−KS0t

S0T

N(d2(t))

with

d1(t) =ln(St

K

)+(r + 1

2σ2)(T − t)

σ√T − t

d2(t) = d1(t)− σ√T − t

t ∈ [0, T )

cT,K(t, St) =cT,K(t, St)

Sδ∗t

(P,A)− martingale

minimal possible price

252

• N(·) standard Gaussian distribution function

with density

N ′(x) =1√2π

exp

−x2

2

253

0

2

4

6

8

t

0.5

1

1.5

2

S

0

0.5

1

0

2

4

6

8

t

0

0.5

1

Black-Scholes European call option price.

254

Delta

• sensitivity with respect to the underlying St

∆ =∂V (t, St)

∂S= δ1t

∆ = N(d1(t))

255

0

2

4

6

8

t

0.5

1

1.5

2

S

0

0.25

0.5

0.75

1

0

2

4

6

8

t

0

0.25

0.5

0.75

Delta as a function of t and St.

256

Gamma

• sensitivity of the hedge ratio with respect to underlying

Γ =∂∆

∂S=∂2V (t, St)

∂S2

Γ = N ′(d1(t))1

St σ√T − t

257

0

2

4

6

8

t

0.5

1

1.5

2

S

0

1

2

3

4

0

2

4

6

8

t

0

1

2

3

Gamma as a function of t and St.

258

Simulation of Delta Hedging

• simulate scenario along an equidistant time discretization

• price of call option

cT,K(t, St) = δ1t St + δ0t S0t

• hedging strategy

δ =δt = (δ0t , δ

1t )

⊤, t ∈ [0, T ]

259

• hedge ratio, units in the underlying

δ1t = N(d1(t))

= N

(ln(St

K

)+(r + 1

2σ2)(T − t)

σ√T − t

)

260

• units in domestic savings account

δ0t = −K

S0T

N(d2(t))

= −K

S0T

N

(ln(St

K

)+(r − 1

2σ2)(T − t)

σ√T − t

)

261

• discounted P&L

Ct = V (t, St)−∫ t

0

δ1s dSs − V (0, S0)

V (t, St) = V (0, S0) +

∫ t

0

δ1s dSs

=⇒ theoretically under continuous hedging

Ct = 0

for all t ∈ [0, T ]

262

In-the-Money Scenario

• security price ends up in-the-money ST > K

=⇒ hedge ratio converges to δ1T = 1

• self-financing strategy δt = (δ0t , δ1t )

• intrinsic valuef(St) = (St −K)+

• discounted P&L Ct remains almost perfectly zero

263

0.5

1

1.5

2

2.5

0 2 4 6 8 10

time

S(t)Delta

Underlying security and hedge ratio for in-the-money call.

264

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10

time

call priceintrinsic value

P&L

Price, intrinsic value and P&L for in-the-money call.

265

Out-of-the Money Scenario

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10

time

S(t)Delta

Underlying security and hedge ratio for out-of-the-money call. 266

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10

time

call priceintrinsic value

P&L

Price, intrinsic value and P&L for out-of-the-money call.

267

Hedging a European Call Option on the S&P500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time

normalized S&P500Delta

Normalized S&P500 and hedge ratio forK = 1.2. 268

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time

Quadratic variation of log-S&P500.

269

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time

call priceintrinsic value

P&L

Call price on S&P500, intrinsic value and P&L.

270

Benchmarked Risk Minimization

Risk Minimization

• Follmer and Sondermann (1986)

• Follmer and Schweizer (1989)

• Schweizer (1991, 2001)

• Biagini et al. (1999)

• Biagini and Cretarola (2009)

• Du & Pl. (2012)

271

Financial Market

• d primary security accounts

• Si,jt - jth primary security account in ith security denomination

272

• locally riskless savings account

Si,it = Si,i

0 exp

∫ t

0

risds

• portfolio

Si,δt =

d∑j=1

δjtSi,jt

273

• self-financing portfolio

Si,δt = Si,δ

0 +d∑

j=1

∫ t

0

δjsdSi,js

274

Numeraire Portfolio

• Si,δ∗t numeraire portfolio

Sδt =

Si,δt

Si,δ∗t

≥ Et(Sδs)

0 ≤ t ≤ s <∞

• supermartingale property

275

• benchmarked jth primary security account

Sjt =

Si,jt

Si,δ∗t

local martingale; supermartingale

276

• matrix valued optional covariation process

[S] = [S]t = ([Si, Sj]t)di,j=1, t ∈ [0,∞)

• benchmarked primary security accounts

S = St = (S1t , . . . , S

dt )

⊤, t ∈ [0,∞)

277

Definition A dynamic trading strategy v, initiated at time t = 0, v =

vt = (ηt, ϑ1t , . . . , ϑ

dt )

⊤, t ∈ [0,∞), where ϑ = ϑt = (ϑ1t , . . . ,

ϑdt )

⊤, t ∈ [0,∞) forms benchmarked self-financing partϑ⊤t St of bench-

marked price process

V vt = ϑ⊤

t St + ηt

ϑ is predictable ∫ t

0

ϑ⊤u d[S]uϑu <∞

278

η = ηt, t ∈ [0,∞) adapted with η0 = 0 monitors the benchmarkednon-self-financing part of

V vt = V v

0 +

∫ t

0

ϑ⊤s dSs + ηt

V vt forms a supermartingale.

279

In general, capital has to be added or removed to match desired price

V vt = Sδ

t =d∑

j=1

δjt Sjt

with

δjt = ϑjt + ηtδ

j∗,t .

280

• benchmarked contingent claim HT

dynamic trading strategy v delivers HT if

V vT = Sδ

T = HT

=⇒ replicable if self-financing

281

Proposition If for HT a self-financing benchmarked portfolio SδHT exists,satisfying

SδHTt = E(HT |Ft)

for all t ∈ [0, T ] P -a.s., then this provides least expensive hedge for HT .

282

Real World Pricing

• least expensive replication by a self-financing benchmarked portfolio=⇒real world pricing formula

SδHTt = Et(HT )

minimal possible price process

283

Definition For a dynamic trading strategy v which delivers

Sδt =

d∑j=1

δjt Sjt

benchmarked P&L

Cδt = Sδ

t −d∑

j=1

∫ t

0

ϑjudS

ju − S

δ0

284

Corollary Cδt = ηt for t ∈ [0,∞).

• usually fluctuating benchmarked P&L

• intrinsic risk

285

What criterion would be most natural?

• symmetric view with respect to all primary security accounts, includingthe domestic savings account

• pooling in large trading book=⇒ vanishing total hedge error

286

Proposition HT,l, V vl withCvl independent square integrable martingales with

E

((C

vlt

Vvl0

)2)≤ Kt <∞ for l ∈ 1, 2, . . . , t ∈ [0, T ], T ∈ [0,∞).

at initial time well diversified trading book holds equal fractions

• total benchmarked wealth Ut =U0

m

∑ml=1

Vvlt

Vvl0

• total benchmarked P&L

Rm(t) =U0

m

m∑l=1

Cvlt

V vl0

,

limm→∞

Rm(t) = 0

P -a.s.

287

Definition A dynamic trading strategy v, initiated at time zero, is calledlocally real-world mean-self-financing if its adapted process ηt = Cδ

t formsan local martingale.

288

• classical risk minimizationFollmer and Sondermann (1986)Follmer and Schweizer (1989)Schweizer (1991, 1995)Schweizer (1999)Follmer-Schweizer decomposition assuming a risk neutral probabilitymeasureBuckdahn (1993) Schweizer (1994) Stricker (1996)Delbaen et al. (1997) Pham et al. (1998)

289

• local risk minimizationBouleau and Lamberton (1989)Duffie and Richardson (1991)Schweizer (1994)Biagini et al. (1999)Schweizer (2001)

290

• Benchmarked P&L is orthogonal if

ηtSt

is vector local martingale.

- above product has no trend- benchmarked hedge error orthogonal to any benchmarked traded wealth

291

• VHTset of locally real-world mean-self-financing dynamic trading strate-

gies v initiated at time zero with

V vt = Sδ

t , t ≥ 0

which deliver HT

with orthogonal benchmarked P&L

292

• market participants prefer more for less

⇒ Benchmarked Risk Minimization

For HT strategy v ∈ VHT

benchmarked risk minimizing (BRM) if for all v ∈ VHTwith V v

t = Sδt

price Sδt is minimal

Sδt ≤ S

δt

P -a.s. for all t ∈ [0, T ].

293

Regular Benchmarked Contingent Claims

HT is called regular if

HT = Et(HT ) +

d∑j=1

∫ T

t

ϑj

HT(s)dSj

s + ηHT(T )− ηHT

(t)

ϑHT- predictable

ηHT- local martingale, orthogonal to S

294

Theorem A regular HT has a BRM strategy v = vt = (ηt, ϑ1t , . . . , ϑ

dt )

⊤, t ∈[0, T ] ∈ VHT

with

Sδt = V v

t = Et(HT ) ,

SδT = HT ,

and orthogonal benchmarked P&L: Cδt = ηHT

(t)

295

=⇒

Cδt - local martingale

Cδt St - vector local martingale

orthogonal

296

hedgeable part:

Et(HT )− Cδt = E0(HT ) +

∫ t

0

ϑ⊤HT

(s)dSs .

local martingale

297

• benchmarked price V vt = Et(HT ) minimal

• do not request square integrability

• no equivalent risk neutral probability measure required

• need only to check zero drift of ηHT

• and ηHT(t), St orthogonality

298

Hedging a Regular Claim

• benchmarked contingent claim HT driven by continuous local mar-tingalesW 1,W 2, . . . ,W d orthogonal to each other

• benchmarked primary security account Sjt , j ∈ 1, . . . , d

dSjt = −Sj

t

d−1∑k=1

θj,kt dW kt

• d× d matrix Φt = [Φi,kt ]di,k=1

Φi,kt =

θi,kt for k ∈ 1, . . . , d− 11 for k = d

for t ∈ [0, T ].

299

Proposition assume Φt invertible and Vt = E(HT |Ft) has representa-tion

Vt = V0 +d∑

k=1

∫ t

0

xksdW

ks +

∫ t

0

xdsdW

ds .

Then HT is a regular benchmarked contingent claim

VvHTt = Vt for all t ∈ [0, T ]

ϑHT(t) = diag(St)

−1(Φ⊤t )−1ξt

ηHT(t) =

∫ t

0

xdsdW

ds

with ξt = (x1t , . . . , x

d−1t , V0 +

∑d−1k=1

∫ t

0xksdW

ks )

⊤ .

300

Si,jt =

Sjt

Sit

dSi,jt = Si,j

t

d−1∑k=1

(θi,kt − θj,kt )(θi,kt dt+ dW k

t )

bi,j,kt = (θi,kt − θj,kt ) .

bdt = [bd,j,kt ]d−1,d−1j,k=1

301

Proposition The matrix Φt is invertible if and only if bdt is invertible.

Proof: elementary transform of bdt

Φt ←→

bdt 0

θd,1t . . . θd,d−1t 1

Φt has full rank if and only if bdt has full rank

302

Comparison with Quadratic Criterion

•∫ t

0ϑ⊤HT

(s)dSs and ηHT(t) independent, square integrable martingales

• S1t , . . . , S

dt and ηHT

(t) independent, square integrable martingales

• ηHTorthogonal to benchmarked primary security accounts

• HT square integrable

• V vt = Sδ

t delivers HT

303

Quadratic Criterion

E((Cδ

T )2)= E

((HT −

∫ T

0

ϑ⊤s dSs − Sδ

0)2

)⇒ min

304

E((Cδ

T )2)

= E

((E(HT ) − Sδ

0 +∫ T

0(ϑ⊤

HT(s) − ϑ⊤

s )dSs + ηHT(T )

)2)

= E(E(HT ) − Sδ

0

)2

+ E(∫ T

0(ϑ⊤

HT(s) − ϑ⊤

s )2d[S]s)+ E((ηHT

(T ))2)

305

=⇒

• Sδ0 = E(HT )

• ϑt = ϑHT(t), t ∈ [0, T ]

• ηHT(T ) = Cδ

T

• second moment of benchmarked P&L becomes minimal

306

307

Nonhedgeable Contingent Claim

• savings account S1,1t = 1

• numeraire portfolio S1,δ∗t

• Ht = Et(HT ), t ∈ [0, T ]

- independent from S1,δ∗t

- continuous

308

Benchmarked risk minimization

• real world pricing formula

SδHTt = Et(HT ) = Et(HT )Et(S

1T ) = HtP (t, T )

P (t, T ) = Et(S1T )

dP (t, T ) =∂P (t, T )

∂S1dS1

t

• benchmarked NP Sδ∗t =

S1,δ∗t

S1,δ∗t

= 1

• benchmarked P&L

dCδHTt = dS

δHTt − ϑ1

HT(t)dS1

t

=

(Ht

∂P (t, T )

∂S1− ϑ1

HT(t)

)dS1

t + P (t, T )dHt

309

• Assume orthogonal benchmarked primary security accounts

• product CδHT S has zero drift if

0 =d[S, CδHT ]t

dt=

(Ht

∂P (t, T )

∂S1− ϑ1

HT(t)

)d[S1]t

dt.

=⇒

ϑ1HT

(t) = Ht

∂P (t, T )

∂S1

Depends onHt !

310

• Benchmarked P&L

ηHT(t) = C

δHTt =

∫ t

0

P (s, T )dHs

local martingale, orthogonal

• self-financing benchmarked hedgeable part

SδHTt − ηHT

(t) = SδHT0 +

∫ t

0

ϑ1HT

(s)dS1s

• ϑ1HT

(t) units in S1t

• remaining wealth in NP

• minimizing ddt[CδHT ]t

311

• Regular benchmarked contingent claim

HT =HT

S1,δ∗T

= SδHT0 +

∫ T

0

Ht

∂P (t, T )

∂S1dS1

t +

∫ T

0

P (t, T )dHt

ϑ1HT

(t) = Ht

∂P (t, T )

∂S1

ηHT(t) =

∫ t

0

P (s, T )dHs

312

Evolving Information

• consider special case when S1 true martingale

• classical risk minimization can be applied

• real world pricing formula yields

SδHTt =

SδHTt

S1t

= Et

(S1T

S1t

HT

S1,1T

)= Et

(ΛT

Λt

HT

S1,1T

)= EQ

t

(HT

S1,1T

)• equivalent minimal martingale measureQ

ΛT =dQ

dP|FT

=S1T

S1t

• same initial price as benchmarked risk minimization

SδHT0 = H0 = S

δHT0 (S1

0)−1

313

• classical risk minimization invests total initial value in the savings ac-count

ϑ1CRM(t) = H0

• BRM strategy different

• P (t, T ) = S1t , ∂P (t,T )

∂S1t

= 1

=⇒

ϑ1HT

(t) = Ht = Et(HT )

• intuitive and practically appealing

• under classical risk minimization, evolving information ignored

• provides less fluctuations for benchmarked P&L

• easier diversified

314

Modeling the Dynamics of Diversified Indices

Pl. & Rendek (2012)

• conjecture for normalized aggregate wealth dynamicstime transformed square root process

• Naive Diversification Theorem⇒ equity index = proxy of numeraireportfolio

• empirical stylized facts⇒ falsify models

315

• ⇒ propose realistic one factor, two component long term index model

• realistic model outside classical theory⇒ benchmark approach

• exact, almost exact simulation⇒ verify empirical facts, effects of esti-mation techniques etc.

316

The Affine Nature of Diversified WealthDynamics

Object: normalized units of wealth

Total wealth: Y ∆τi

Time steps: τi = i∆

Wealth unit value:√∆

317

Economic activity: during [τi, τi+1) ”projects”generate each independent wealth with variance increment v2∆3/2;consume each η∆ fraction of wealth;generate together on average β

√∆ new units.

318

Mean for increment of aggregate wealth:(β − ηY ∆

τi

)∆

319

Variance for increment aggregate wealth: , sum of variances

=⇒ proportional to number of wealth units:Y ∆

τi√∆

=⇒ proportional to aggregate wealth=⇒ variance of increment of aggregate wealth is v2Y ∆

τi∆

320

for ∆→ 0

Y ∆τi+1− Y ∆

τi=(β − ηY ∆

τi

)∆ + υ

√Y ∆τi

∆Wτi

E(∆Wτi) = 0, E((∆Wτi)2) = ∆

conjectures drift and diffusion terms

321

=⇒ Conjecture viaWeak convergenceKleoden & Pl. (1992), Alfonsi (2005), Diop (2003)for parameters: β = η = υ = 1

square root process:

dYτt = (1− Yτt) dτt +√YτtdWτt

322

• Quadratic variation:

[Yτ. ]t =

∫ t

0

Yτsdτs =

∫ t

0

YτsMsds

• Market activity:

Mt =dτt

dt

• integrate normalized index:can we findM =const. s.t.

M

∫ t

0

Yτsds ≈ [Yτ. ]t ?

323

Quadratic variation and integrated normalized S&P500monthly data, calendar time, Shiller data

1871 1921 1971 20210

0.5

1

1.5

2

2.5

3

[ Yτ ]

t

M ∫0τ

t Yτ

s

ds

M ≈ 0.0178

average long term fit

324

Market Activity: Mt =dτt

dtfrom model

1871 1921 1971 20210

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

325

Quadratic variation and integrated normalized S&P500monthly data, τ -time

1871 1921 1971 20210

0.5

1

1.5

2

2.5

3

[ Yτ ]

t

∫0τ

t Yτ

s

dτs

326

Eight Stylized Empirical Facts

• falsify potential models, Popper (1959)

• TOTMKWD in 26 currency denominations

about 1000 years of daily data

327

(i) uncorrelated log-returns

0 10 20 30 40 50 60 70 80 90 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Average autocorrelation function for log-returns

328

(ii) correlated absolute log-returns

0 10 20 30 40 50 60 70 80 90 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Average autocorrelation function for absolute log-returns

329

(iii) Student-t distributed log-returns

−20 −15 −10 −5 0 5 10 15 20 2510

−6

10−5

10−4

10−3

10−2

10−1

100

Empirical log−density

Theoretical log−density

Logarithm of empirical density of normalized log-returns with Student-tdensity

330

Results for log-returns of the EWI104s

Pl. & Rendek (2008)

0

0.5

1

1.5

2

−5−4

−3−2.15

−10

1 2

34

5

−2.94

−2.92

−2.9

−2.88

−2.86

−2.84

αλ

Estimated λ

Estimated LLF

× 105

SGH Student-t NIG Hyperbolic VG

σ 0.98 0.72 0.97 0.96 0.96

α 0.00 0.97 0.72

λ -2.16 1.49

ν 4.33

ln(L∗) -285796.39 -285796.39 -286448.94 -287152.08 -287499.83

Ln 0.0000004 1305.10 2711.38 3406.88

Ln = 0.0000004 < χ20.001,1 ≈ 0.000002

331

(iv) volatility clustering

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20130

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Estimated volatility

332

(v) long term exponential growth

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20133.5

4

4.5

5

5.5

6

6.5

4.178+0.048 t

Logarithm of index with trend line

333

(vi) leverage effect

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Logarithms of normalized index and its volatility

334

(vii) extreme volatility at major downturns

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Logarithms of normalized index and its volatility

335

(viii) Integrated Normalized Index and its Quadratic Variationmonthly data, calendar time

1871 1921 1971 20210

0.5

1

1.5

2

2.5

3

[ Yτ ]

t

M ∫0τ

t Yτ

s

ds

M ≈ 0.0178

average long term fit

336

⇒ Discounted Index Model generalizing conjecture

St = Aτt(Yτt)q,

Aτt = A expaτt

q > 0, a > 0,A > 0

conjecture expects q = 1

337

Normalized index: (Yτt)q = St

Aτt

dYτ =

δ4−

1

2

(Γ(δ2+ q

)Γ(δ2

) ) 1q

dτ +√Yτ dW (τ )

Long term mean: limτ→∞1τ

∫ τ

0(Ys)

qds = 1 P-a.s

338

Market activity time: dτt = Mtdt

Inverse of market activity:

d

(1

Mt

)=

4γ − ϵ

1

Mt

)dt+

√γ

Mt

dWt,

where

dW (τt) =

√dτt

dtdWt =

√MtdWt

⋄ only oneWt

⋄ two component model

339

Discounted index SDE:

dSt = St (µtdt+ σtdWt)

Expected rate of return:

µt =

a

Mt

−q

2

(Γ(δ2+ q

)Γ(δ2

) ) 1q

+

4q +

1

2q(q − 1)

)1

MtYτt

Mt

Volatility:

σt = q

√Mt

Yτt

Pl. & Rendek (2012c)

340

Benchmark Approach

Bt – benchmark savings account

dBt = Bt

((−µt + σ2

t

)dt− σtdWt

)

σ2t ≤ µt ⇒ Bt is an (A, P )-supermartingale

⇒ no strong arbitrage; Pl. (2011)

341

Assumptions:

A1. δ = 2(q + 1) A2. q2

(Γ(2q+1)Γ(q+1)

) 1q ≤ a

=⇒ σ2t ≤ µt

342

Fitting the model to TOTMKWD

Step 1: Normalization of IndexAτt ≈ A exp 4aϵ

γ(ν−2)t⇒A = 65.21, 4aϵ

γ(ν−2)≈ 0.048

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20133.5

4

4.5

5

5.5

6

6.5

4.178+0.048 t

343

Normalized TOTMKWD

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20130.4

0.6

0.8

1

1.2

1.4

1.6

1.8

344

Step 2: Power q:Affine nature =⇒ conjecture: q = 1 = δ

2− 1 =⇒ δ = 4

• student-t with about four degree of freedomis considered and cannot be falsified,

=⇒ We set q = 1 and δ = 4

345

Step 3: Observing Market Activity:

d[√

Y ]τt

dt= 1

4dτt

dt= Mt

4

Qti ≈[√

Y ]τti+1−[

√Y ]τti

ti+1−ti

Qti+1= α√ti+1 − tiQti + (1− α√ti+1 − ti)Qti , α = 0.92

exponential smooth

robust

346

Market activity: Mt ≈ 4Qt

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20130

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M0 = 0.0175

347

Step 4: Parameter γ:

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20130

500

1000

1500

2000

2500

3000

66.28 t

γ = 265.12

348

Step 5: Parameters ν and ϵ andStep 6: Long Term Average Net Growth Rate a:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450

10

20

30

40

50

60

ν ≈ 4, ϵ ≈ 2.18⇒ a = 2.55⇒ no strong arbitrage

349

Fitted model allows visualizingCalculated Volatility

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 20130

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σt ≈√

4Qt

Yτt, average volatility: 11.9%

350

Model applies also to proxies of numeraire portfolioS&P500 and VIX

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013−3

−2.5

−2

−1.5

−1

−0.5

0

log calculated volatility

log scaled VIX

A = 52.09, ϵ = 2.15, γ = 172.3, a = 1.5

351

Simulation StudyStep 1: Market activity:

1

Mti+1

=γ(1− e−ϵ(ti+1−ti))

χ23,i +

√ 4ϵe−ϵ(ti+1−ti)

γ(1− e−ϵ(ti+1−ti))

1

Mti

+ Zi

2

0 5 10 15 20 25 30 35 400

0.2

0.4

0.6

0.8

1

1.2

exact simulation

352

Step 2: τ -time:

τti+1− τti =

∫ ti+1

ti

Msds ≈Mti(ti+1 − ti)

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

almost exact simulation

353

Step 3: Normalized index:

Yτti+1=

1− e−(τti+1−τti

)

4

χ23,i +

√√√√ 4e

−(τti+1−τti

)

1− e−(τti+1−τti

)Yτti

+ Zi

2

0 5 10 15 20 25 30 35 40

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

almost exact simulation

354

Model recovers stylized empirical facts:

Model is difficult to falsify: Popper (1934)

1. Uncorrelated returns

0 10 20 30 40 50 60 70 80 90 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

355

2. Correlated absolute returns

0 10 20 30 40 50 60 70 80 90 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

356

3. Student-t distributed returns

357

estimated statistics

Simulation Student-t NIG Hyperbolic VG ν

1 0.008934 37.474149 102.719638 131.240780 4.012850

2 11.485226 11.175028 96.457136 132.916256 3.450916

3 0.000000 100.928524 244.190151 294.719960 3.734148

4 9.002421 35.759464 347.060676 331.014904 2.579009

5 8.767003 11.551178 121.190482 144.084964 3.170449

6 0.401429 60.570898 205.788160 252.591737 3.432435

7 12.239056 4.354888 46.411554 78.273485 3.957696

8 1.693411 23.910523 94.408789 130.623174 3.849691

9 1.232454 47.830407 202.073144 237.168411 3.236322

10 0.000000 43.037206 128.807757 162.582353 3.774957

11 0.433645 47.782681 172.736397 208.847632 3.431803

12 0.000000 56.019354 146.077121 185.624888 3.899403

13 7.137154 48.219756 579.922931 477.383441 2.293363

14 5.873948 16.515390 107.770531 135.508299 3.388307

15 0.000000 54.718046 184.112794 217.304105 3.402049

16 6.982560 3.991610 29.192198 47.105125 4.268740

17 2.966916 22.914863 108.513143 138.044416 3.553629

18 0.000000 52.066364 129.790856 160.373085 3.959605

19 0.006909 39.568695 111.398645 143.914350 3.982892

20 0.000001 56.845664 169.915512 211.260626 3.651091

21 1.674578 17.681088 61.710576 90.679738 4.265834

22 14.010840 3.279722 47.433693 73.789313 3.770825

23 11.198940 12.074044 114.888817 143.800553 3.257146

24 0.455557 27.676102 86.841704 114.452947 4.006528

358

4. Volatility clustering

0 5 10 15 20 25 30 35 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

359

5. Long term exponential growth

0 5 10 15 20 25 30 35 403.5

4

4.5

5

5.5

6

6.5

4.16+0.05 t

360

6. Leverage effect and7. Extreme volatility at major market downturns

0 5 10 15 20 25 30 35 40−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

361

Conclusions:

⋄ equity index model: 3 initial parameters, 3 structural parameters and 1

Wiener process (nondiversifiable uncertainty)

⋄ model recovers 7 stylized empirical facts

⋄ allows long dated derivative pricing under benchmark approach

⋄ leads outside classical theory

⋄ if benchmarked savings account local martingale=⇒ only 2 structural parameters

362

Squared Bessel Processes (*)

Revuz & Yor (1999)

• squared Bessel process BESQδx

dimension δ ≥ 0

dXφ = δ dφ+ 2√|Xφ| dWφ

φ ∈ [0,∞) withX0 = x ≥ 0

• scaling property

Zφ =1

aXaφ

BESQδxa

, a > 0

363

• sum of squares

Xφ =δ∑

k=1

(wk +W kφ)

2

W kφ Wiener process

=⇒

dXφ = δ dφ+ 2

δ∑k=1

(wk +W k

φ

)dW k

φ

X0 =δ∑

k=1

(wk)2 = x

364

• setting

dWφ = |Xφ|−12

δ∑k=1

(wk +W k

φ

)dW k

φ

• quadratic variation

[W ]φ =

∫ φ

0

1

Xs

δ∑k=1

(wk +W k

s

)2ds = φ

Levy’s theorem

=⇒ W Wiener process in φ time

365

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

phi

Squared Bessel process of dimension δ = 4 in φ-time

366

• additivity property

Shiga & Watanabe (1973)

X = Xφ, φ ∈ [0,∞) BESQδx

Y = Yφ, φ ∈ [0,∞) independent BESQδ′

y

=⇒ Xφ + Yφ forms BESQδ+δ′

x+y

x, y, δ, δ′ ≥ 0

367

• δ > 2, strict positivity

withX0 = x > 0

P

(inf

0≤φ<∞Xφ > 0

)= 1

• δ = 2, no strict positivity

P

(inf

0≤φ<∞Xφ > 0

)= 0

• δ ∈ [0, 2), no strict positivityX0 = x > 0

P

(inf

0≤φ≤φ′Xφ = 0

)> 0

368

• transition density

δ > 0 , x > 0

pδ(ϱ, x;φ, y) =1

2(φ− ϱ)

(y

x

)ν2

exp

x+ y

2(φ− ϱ)

(√x y

φ− ϱ

)

Iν modified Bessel function of the first kind

index ν = δ2− 1

369

80

90

100

110

120

y0.1

0.2

0.3

0.4

0.5

t

0

0.05

0.1

0.15

80

90

100

110y

Transition density of squared Bessel process for δ = 4

370

• Y =Xφ

φnon-central chi-square distributed

dimension δnon-centrality parameter ℓ = x

φ

P

(Xφ

φ< u

)=

∞∑k=0

exp− ℓ

2

(ℓ2

)kk !

1−Γ(

u2; δ+2k

2

)Γ(

δ+2k2

)

Γ(·; ·) incomplete gamma function

371

• Moments for α > − δ2

, φ ∈ (0,∞) and δ > 2

E(Xα

φ

∣∣A0

)=

(2φ)α exp

−X0

∑∞k=0

(X0

)k Γ(α+k+ δ2)

k ! Γ(k+ δ2)

for α > − δ2

∞ for α ≤ − δ2

=⇒E(Xφ

∣∣A0

)= X0 + δ φ

372

• by monotonicity of the gamma function

E(Xα

φ

∣∣A0

)≤ (2φ)α exp

−X0

(Γ(α+ δ

2

)Γ(δ2

) + exp

X0

)

< ∞

• for δ = 4

E(X−1

φ

∣∣A0

)= X−1

0

(1− exp

−X0

)

373

A Strict Local Martingale

Zφ = X−1φ inverse of a squared Bessel processXφ of dimension 4

dZφ = −2Z 32φ dWφ

=⇒ local martingale

E(Zφ

∣∣A0

)= E

(X−1

φ

∣∣A0

)= Z0

(1− exp

−12Z0 φ

)< Z0

=⇒ strict local martingale

=⇒ strict supermartingale

374

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90

phi

Inverse of a squared Bessel process of dimension δ = 4 in φ-time

375

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 10 20 30 40 50 60 70 80 90

phi

Expectation of the inverse of the squared Bessel process for δ = 4 inφ-time

376

Time Transformation

• φ-time

φ(t) = φ(0) +1

4

∫ t

0

c2usudu

t ∈ [0,∞), s0 > 0

with

st = s0 exp

∫ t

0

bu du

377

• φ-time

for constant b < 0, c = 0

φ(t) = φ(0) +c2

4 b s0(1− exp−b t)

• time

t(φ) = −1

bln

(1−

4 b s0

c2(φ− φ(0))

)

378

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

phi

Time t(φ) against φ-time

379

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

t

Squared Bessel process in dependence on time t

380

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30

t

Expectation of a squared Bessel process in dependence on time t

381

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5 10 15 20 25 30

t

Expectation of the inverse of a squared Bessel process in dependence ontime t

382

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20 25 30

t

Inverse of squared Bessel process in dependence on time t

383

Square Root Process

Yt = stXφ(t)

dYt = st dXφ(t) +Xφ(t) dst

= st δ dφ(t) + st 2√Xφ(t) dWφ(t) +Xφ(t) st bt dt

=

4c2t + bt Yt

)dt+ ct

√Yt

√4 st

c2tdWφ(t)

384

dUt =

√4 st

c2tdWφ(t)

has quadratic variation

[U ]t =

∫ t

0

4 sz

c2zdφ(z) = t

U Wiener process

=⇒ SR process

dYt =

4c2t + bt Yt

)dt+ ct

√Yt dUt

385

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

t

Sample path of a square root process in dependence on time t

386

• moment

E(Y αt

∣∣A0

)= (2 φt st)

α exp

−Y0

2 φt

∞∑k=0

(Y0

2 φt

)kΓ(α+ k + δ2)

k! Γ(k + δ2)

δ > 2, α > − δ2

• moment estimate

E(Y αt

∣∣A0

)≤ (2 φt st)

α exp

−Y0

2 φt

(Γ(α+ δ

2)

Γ( δ2)

+ exp

Y0

2 φt

)

< ∞ for α ∈ (−δ

2, 0)

st =st

s0= exp

∫ t

0

bu du

φt = s0 (φ(t)− φ(0)) =

1

4

∫ t

0

c2usudu

387

• first moment of SR process

E(Yt

∣∣A0

)= E

(Y0

∣∣A0

)exp

∫ t

0

bs ds

+

∫ t

0

δ

4c2s exp

∫ t

s

bz dz

ds

• case δ = 4

for c2t = c2 > 0 and bt = b < 0

limt→∞

E(Yt

∣∣A0

)= −

c2

b

limt→∞

E(Y −1t

∣∣A0

)= −2

b

c2

388

• transition density

p(s, Ys; t, Yt) =pδ

(φ(s), Ys

ss;φ(t), Yt

st

)st

p(0, x; t, y) =1

2st φt

(y

x st

) ν2

exp

−x+ y

st

2 φt

√x y

st

φt

for 0 < t <∞, x, y ∈ (0,∞),

where ν = δ2− 1, st = expb t and φt =

c2

4 b(1− 1

st)

389

• stationary density

is gamma density

pY∞(y) =

(−2 bc2

) δ2

yδ2−1

Γ( δ2)

exp

2 b

c2y

390

Minimal Market ModelPl. (2001), special case of Pl.-Rendek model

Volatility Parametrization

• Diversification Theorem =⇒

well diversified stock market index approximates NP

• discounted NP

dSδ∗t = Sδ∗

t |θt| (|θt| dt+ dWt),

where

dWt =1

|θt|

d∑k=1

θkt dWkt

391

0

20

40

60

80

100

120

140

160

1926 1950 1975 2000

Discounted NP

392

0

1

2

3

4

5

1926 1950 1975 2000

ln(disc WSI)ln(A(t))

Logarithm of discounted NP

393

Drift Parametrization

• discounted NP driftαt = Sδ∗

t |θt|2

strictly positive, predictable=⇒

• volatility

|θt| =√αt

Sδ∗t

leverage effect creates natural feedbackunder reasonably independent drift

394

• discounted NP

dSδ∗t = αt dt+

√Sδ∗t αt dWt

drift has economic meaning

• transformed time

φt =1

4

∫ t

0

αs ds

395

• squared Bessel process of dimension four

Xφt = Sδ∗t

dW (φt) =

√αt

4dWt

dXφ = 4 dφ+ 2√Xφ dW (φ)

Revuz & Yor (1999)

economically founded dynamics in φ-time

still no specific dynamics in t-time assumed

396

Time Transformed Bessel Process

d

√Sδ∗t =

3αt

8

√Sδ∗t

dt+1

2

√αt dWt

• quadratic variation [√Sδ∗

]t=

1

4

∫ t

0

αs ds

• transformed timeφt =

[√Sδ∗

]t

observable

397

0

2

4

6

8

10

12

14

1926 1950 1975 2000

Empirical quadratic variation of the square root of the discounted S&P 500

398

Stylized Minimal Market Model

Pl. (2001, 2002, 2006), Pl. & Rendek (2012)

• assume discounted NP drift as

αt = α exp η t

• initial parameter α > 0

• net growth rate η

399

• transformed time

φt =α

4

∫ t

0

exp η z dz

4 η(exp η t − 1)

400

0

2

4

6

8

10

12

14

1926 1950 1975 2000

observed transformed timefitted transformed time

Fitted and observed transformed time

401

• normalized NP

Yt =Sδ∗t

αt

dYt = (1− η Yt) dt+√Yt dWt

square root process of dimension four

=⇒ parsimonious model, long term viabilityconfirmation of stylized Pl.-Rendek modelPl. & Rendek (2012)

402

=⇒

• discounted NPSδ∗t = Yt αt

• NPSδ∗t = S0

t Sδ∗t = S0

t Yt αt

• scaling parameter α = 0.043

• net growth rate η = 0.0528

• reference level 1η= 18.93939

• speed of adjustment η

• half life time of major displacement ln(2)η≈ 13 years

403

20

30

40

50

60

70

80

90

100

1926 1950 1975 2000

Normalized NP

404

• logarithm of discounted NP

ln(Sδ∗t ) = ln(Yt) + ln(α) + η t

• no need for extra volatility process in MMM

• realistic long term dynamics

405

Volatility of NP under the stylized MMM

|θt| =1√Yt

• squared volatility

d|θt|2 = d

(1

Yt

)= |θt|2 η dt−

(|θt|2

) 32 dWt

3/2 volatility model

Pl. (1997), Lewis (2000)

406

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1926 1950 1975 2000

Volatility of the NP under the stylized MMM

407

Transition Density of Stylized MMM

• transition density of discounted NP Sδ∗

p(s, x; t, y) =1

2 (φt − φs)

(y

x

) 12

exp

x+ y

2 (φt − φs)

× I1( √

x y

φt − φs

)

φt =α

4 η(expη t − 1)

I1(·) modified Bessel function of the first kind

408

• non-central chi-square distributed random variable:

y

φt − φs

=Sδ∗t

φt − φs

with δ = 4 degrees of freedom and non-centrality parameter:

x

φt − φs

=Sδ∗s

φt − φs

409

80

90

100

110

120

y0.1

0.2

0.3

0.4

0.5

t

0

0.05

0.1

0.15

80

90

100

110y

Transition density of squared Bessel process for δ = 4410

Zero Coupon Bond under the stylized MMM

• zero coupon bond

P (t, T ) = Sδ∗t Et

(1

Sδ∗T

)= P ∗

T (t)Et

(Sδ∗t

Sδ∗T

)

with savings bond

P ∗T (t) = exp

−∫ T

t

rs ds

411

δ = 4 =⇒

P (t, T ) = P ∗T (t)

(1− exp

Sδ∗t

2 (φT − φt)

)< P ∗

T (t)

for t ∈ [0, T ), Pl. (2002)

with time transform

φt =α

4 η(expη t − 1)

P (0, T ) = 0.00423

P ∗T (0) = 0.04947

P (0,T )P ∗

T (0)≈ 0.0855

412

0

0.2

0.4

0.6

0.8

1

1.2

1926 1950 1975 2000

savings bondP(t,T)

Zero coupon bond and savings bond

413

-6

-5

-4

-3

-2

-1

0

1

1926 1950 1975 2000

ln(savings bond)ln(hedge portfolio)

ln(P(t,T))

ln from Zero coupon bond, hedge portfolio and savings bond

414

Forward Rates under the MMM

• forward rate

f(t, T ) = −∂

∂Tln(P (t, T ))

= rT + n(t, T )

415

• market price of risk contribution

n(t, T ) = −∂

∂Tln

(1− exp

Sδ∗t

2(φT − φt)

)

=1(

exp

Sδ∗t

2(φT −φt)

− 1

) Sδ∗t

(φT − φt)2

αT

8

limT→∞

n(t, T ) = η

Pl. (2005), Miller & Pl. (2005)

416

0.020.04

0.06

0.08

0.1

eta

20

40

60

80

T

0

0.025

0.05

0.075

0.1

0.020.04

0.06

0.08eta

Market price of risk contribution in dependence on η and T417

Free Snack from Savings Bond

• potential existence of weak form of arbitrage?

borrow amount P (0, T ) from savings account

Sδt = P (t, T )− P (0, T ) expr t

such that Sδ0 = 0

SδT = 1− P (0, T ) expr T > 0

lower bondSδt ≥ −P (0, T ) expr t

418

• since Sδt may become negative

not strong arbitrage

Fundamental Theorem of Asset Pricing

Delbaen & Schachermayer (1998) =⇒ the MMM does not

admit an equivalent risk neutral probability measure

=⇒there is a free lunch with vanishing risk

Delbaen & Schachermayer (2006)

419

Absence of an Equivalent Risk Neutral Probability Measure

• fair zero coupon bond has a lower price than the savings bond

P (t, T ) < P ∗T (t) = exp

−∫ T

t

rs ds

=S0t

S0T

• Radon-Nikodym derivative

Λt =S0t

S00

=Sδ∗0

Sδ∗t

strict supermartingale under MMM

420

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1926 1950 1975 2000

total massRadon Nikodym deriv

Radon-Nikodym derivative and total mass of candidate risk neutral measure

421

• hypothetical risk neutral measure

total mass:

Pθ,T (Ω) = E (ΛT ) = 1− exp

−Sδ∗0

2φT

< Λ0 = 1

Pθ is not a probability measure

422

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1926 1950 1975 2000

P*^P^

Benchmarked zero coupon bond

423

Hedge Simulation

• delta units in the NP

δ∗(t) =∂P (t, T )

∂Sδ∗t

= exp

−∫ T

0

rs ds

exp

Sδ∗t

2(φT − φt)

1

2(φT − φt)

424

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1926 1950 1975 2000

Ratio in the NP

425

-8e-006

-6e-006

-4e-006

-2e-006

0

2e-006

4e-006

6e-006

8e-006

1926 1950 1975 2000

Benchmarked P&L for hedge portfolio

426

European Call Options under the MMM

real world pricing formula =⇒

cT,K(t, Sδ∗t ) = Sδ∗

t Et

((Sδ∗

T −K)+

Sδ∗T

)

= Et

(Sδ∗t −

K Sδ∗t

Sδ∗T

)+

= Sδ∗t

(1− χ2(d1; 4, ℓ2)

)−K exp−r (T − t) (1− χ2(d1; 0, ℓ2))

χ2(·; ·, ·) non-central chi-square distribution

427

with

d1 =4 ηK exp−r (T − t)

S0t αt (expη (T − t) − 1)

and

ℓ2 =2 η Sδ∗

t

S0t αt (expη (T − t) − 1)

Hulley, Miller & Pl. (2005)

Miller & Pl. (2008)

428

0.6

0.8

1

1.2K2

4

6

8

10

T

0.2

0.225

0.25

0.275

0.6

0.8

1

1.2K

Implied volatility surface for the stylized MMM

429

• implied volatility

in BS-formula adjust short rate to

r = −1

T − tln(P (t, T ))

otherwise put and call implied volatilities do not match

430

European Put Options under the MMM

• fair put-call parity relation

pT,K(t, Sδ∗t ) = cT,K(t, Sδ∗

t )− Sδ∗t +K P (t, T )

• European put option formula

pT,K(t, Sδ∗t ) = −Sδ∗

t

(χ2(d1; 4, ℓ2)

)+K exp−r (T − t)

(χ2(d1; 0, ℓ2)− exp−ℓ2

)

Hulley, Miller & Pl. (2005)

431

0

5000

10000

15000

20000

25000

30000

35000

Dec-2

5

Dec-2

8

Dec-3

1

Dec-3

4

Dec-3

7

Dec-4

0

Dec-4

3

Dec-4

6

Dec-4

9

Dec-5

2

Dec-5

5

Dec-5

8

Dec-6

1

Dec-6

4

Dec-6

7

Dec-7

0

Dec-7

3

Dec-7

6

Dec-7

9

Dec-8

2

Dec-8

5

Dec-8

8

Dec-9

1

Dec-9

4

Dec-9

7

Dec-0

0

Dec-0

3

index

K*savings bond

"risk neutral" put

fair put

Risk neutral and fair put on index

432

0

50

100

150

200

250

300

30

/03

/19

28

31

/07

/19

30

30

/11

/19

32

29

/03

/19

35

30

/07

/19

37

30

/11

/19

39

31

/03

/19

42

31

/07

/19

44

29

/11

/19

46

31

/03

/19

49

31

/07

/19

51

30

/11

/19

53

30

/03

/19

56

31

/07

/19

58

30

/11

/19

60

29

/03

/19

63

30

/07

/19

65

30

/11

/19

67

31

/03

/19

70

31

/07

/19

72

29

/11

/19

74

31

/03

/19

77

31

/07

/19

79

30

/11

/19

81

30

/03

/19

84

31

/07

/19

86

30

/11

/19

88

29

/03

/19

91

30

/07

/19

93

30

/11

/19

95

31

/03

/19

98

31

/07

/20

00

29

/11

/20

02

38

44

2

index

K*savings bond

"risk neutral" put

fair put

Benchmarked “risk neutral” and fair put on index

433

• put-call parity breaks down if one uses the savings bond P ∗T (t)

pT,K(t, Sδ∗t ) < cT,K(t, Sδ∗

t )− Sδ∗t +K exp−r (T − t)

for t ∈ [0, T )

434

Comparison to Hypothetical Risk Neutral Prices

• hypothetical risk neutral price c∗T,K(t, Sδ∗t )

of a European call option on the GOP

• benchmarked hypothetical risk neutral call price

c∗T,K(t, Sδ∗t ) =

c∗T,K(t, Sδ∗t )

Sδ∗t

local martingale

c∗T,K(·, ·) uniformly bounded

435

=⇒ c∗T,K - martingale =⇒

c∗T,K(t, Sδ∗t ) = cT,K(t, Sδ∗

t )

=⇒c∗T,K(t, Sδ∗

t ) = cT,K(t, Sδ∗t )

436

• hypothetical risk neutral put-call parity

p∗T,K(t, Sδ∗t ) = c∗T,K(t, Sδ∗

t )− Sδ∗t +K P ∗

T (t)

since P ∗T (t) > P (t, T ) =⇒

pT,K(t, Sδ∗t ) < p∗T,K(t, Sδ∗

t )

t ∈ [0, T )

437

Difference in Asymptotic Put Prices

• hypothetical risk neutral prices can become extreme if NP value tendstowards zero

• asymptotic fair zero coupon bond

limSδ∗

t →0PT (t, T )

a.s.= 0

for t ∈ [0, T )

• asymptotic fair European call

limSδ∗

t →0cT,K(t, Sδ∗

t )a.s.= lim

Sδ∗t →0

Sδ∗t cT,K(t, Sδ∗

t ) = 0

438

• asymptotic fair put

fair put-call parity =⇒

limSδ∗

t →0pT,K(t, Sδ∗

t )a.s.= 0

439

• asymptotic hypothetical risk neutral put

hypothetical risk neutral put-call parity =⇒

limSδ∗

t →0p∗T,K(t, Sδ∗

t )

a.s.= lim

Sδ∗t →0

(pT,K(t, Sδ∗

t ) +KS0t

S0T

exp

Sδ∗t

2(φT − φt)

)

a.s.= K

S0t

S0T

> 0

dramatic differences can arise

440

0

5000

10000

15000

20000

25000

30000

35000

Dec-2

5

Dec-2

8

Dec-3

1

Dec-3

4

Dec-3

7

Dec-4

0

Dec-4

3

Dec-4

6

Dec-4

9

Dec-5

2

Dec-5

5

Dec-5

8

Dec-6

1

Dec-6

4

Dec-6

7

Dec-7

0

Dec-7

3

Dec-7

6

Dec-7

9

Dec-8

2

Dec-8

5

Dec-8

8

Dec-9

1

Dec-9

4

Dec-9

7

Dec-0

0

Dec-0

3

index

K*savings bond

"risk neutral" put

fair put

“Risk neutral” and fair put on index

441

Pricing Annuities

Baldeaux and Pl. (2012)

Interest Indexed Payouts

Q(t, T ) = S∗t Et

(BT

S∗T

)S∗t =

S∗t

Bt

Bt - savings account

442

e.g.: Minimal Market Model (MMM), Pl. (2001)=⇒

Q(t, T ) = 1− exp

2 η S∗t

α (expη T − expη t)

443

Interest Indexed Life Annuity

θ-entitlement levelT -retirement dateT0 < T1 < T2 < · · ·ξx - remaining life time of individual aged x at time 0

Uθx,T (t) = S∗

t Et

∑Ti≥T

Iξx>Tiθ BTi

S∗Ti

= θ

∑Ti≥T

Pt (ξx > Ti) Q(t, Ti)

444

Threshold Life Table

P (ξx > T ) =

exp− b

ln(C)

(Cx+T − 1

)for T ≤ N − x

q(1 + λ

(x+T−N

ω

))− 1λ

for T > N − x

?)

445

60 70 80 90 100 110 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ung

radu

ated

mor

talit

y ra

te

age

Figure 1: Mortality rates fitted to mortality data of the US population in 2007with threshold atN = 93.

446

2

4

6

8

10

12

14

16

18

10 20 30 40

Figure 2: Discounted fair interest indexed life annuity as function of time toretirement.

447

0

2

4

6

8

10

12

14

16

18

20

1920 1940 1960

discounted hedge portfoliodiscounted fair annuity

Figure 3: Discounted hedging portfolio and discounted fair interest indexedlife annuity evolving over the years.

448

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1920 1940 1960

Figure 4: Fraction of the hedging portfolio invested in the benchmark port-folio.

449

Targeted Pension

Γl(t)-account of l th member in units of interest indexed life annuity

• total discounted valueMti∑l=1

Γl(ti)Uθti

xl,Tl(ti) = δ0total(ti) + δ∗total(ti) S

∗ti

=⇒ entitlement level

θti =δ0total(ti) + δ∗total S

∗ti∑Mi

l=1 Γl(ti)∑

Tk≥TlPti(ξxl > Tk)Q(ti, Tk)

450

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1920 1940 1960

Figure 5: Entitlement level over the years.

451

0.99

0.995

1

1.005

1.01

1.015

1.02

1973 1980 1990 2000 2010

Figure 6: Entitlement level using fast growing portfolio and daily hedging.

452

Variable Annuity

Guaranteed Minimum Death Benefits

Marquardt, Pl. & Jaschke (2008)

• payout to the policyholder

max(egτV0, Vτ )

τ time of death

g ≥ 0 is the guaranteed instantaneous growth rate

V0 is the initial account value

Vτ is the unit value of the policyholder’s account at time of death τembedded put option

453

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

MMM

T

GM

DB

0

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

risk neutral

T

GM

DB

0

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

1.15Black Scholes

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15MMM

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15risk neutral

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15Black Scholes

T

GM

DB

0g=0.025

g=0

g=0.025g=0.025

g=0g=0

Present value of the GMDB under the real world pricing formula (left), the risk

neutral pricing formula (middle) and the Black Scholes formula (right) for

η = 0.05, α0 = 0.05, r = 0.05, ξ = 0.01 and Y0 = 20.454

ReferencesArrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Helsinki: Yrjo Hahnsson Foun-

dation.

Best, M. J. & R. R. Grauer (1991). On the sensitivity of mean-variance-efficient portfoliosto changes in asset means: Some analytical and computational results. Rev. FinancialStudies 4(2), 315–342.

Black, F. & M. Scholes (1973). The pricing of options and corporate liabilities. J. PoliticalEconomy 81, 637–654.

Breiman, L. (1960). Investment policies for expanding business optimal in a long run sense.Naval Research Logistics Quarterly 7(4), 647–651.

Breiman, L. (1961). Optimal gambling systems for favorable games. In Proceedings of theFourth Berkeley Symposium on Mathematical Statistics and Probability, Volume I, pp.65–78.

Cochrane, J. H. (2001). Asset Pricing. Princeton University Press.

Constantinides, G. M. (1992). A theory of the nominal structure of interest rates. Rev. Finan-cial Studies 5, 531–552.

Davis, M. H. A. (1997). Option pricing in incomplete markets. In M. A. H. Dempster and

455

S. R. Pliska (Eds.), Mathematics of Derivative Securities, pp. 227–254. Cambridge Uni-versity Press.

Debreu, G. (1959). Theory of Value. Wiley, New York.

Delbaen, F. & W. Schachermayer (1998). The fundamental theorem of asset pricing for un-bounded stochastic processes. Math. Ann. 312, 215–250.

Delbaen, F. & W. Schachermayer (2006). The Mathematics of Arbitrage. Springer Finance.Springer.

DeMiguel, V., L. Garlappi, & R. Uppal (2009). Optimal versus naive diversification: Howinefficient is the 1/n portfolio strategy? Rev. Financial Studies 22(5), 1915–1953.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

Duffie, D. (2001). Dynamic Asset Pricing Theory (3rd ed.). Princeton, University Press.

Fernholz, E. R. & I. Karatzas (2005). Relative arbitrage in volatility-stabilized markets. An-nals of Finance 1(2), 149–177.

Geman, S., N. El Karoui, & J. C. Rochet (1995). Changes of numeraire, changes of proba-bility measures and pricing of options. J. Appl. Probab. 32, 443–458.

Hakansson, N. H. (1971a). Capital growth and the mean-variance approach to portfolio se-lection. J. Financial and Quantitative Analysis 6(1), 517–557.

Hakansson, N. H. (1971b). Multi-period mean-variance analysis: towards a general theory

456

of portfolio choice. J. Finance 26, 857–884.

Hakansson, N. H. & W. T. Ziemba (1995). Capital growth theory. In R. Jarrow, V. Maksi-movic, and W. T. Ziemba (Eds.), Handbooks in Operations Research and ManagementScience: Finance, Volume 9, pp. 65–86. Elsevier Science.

Harrison, J. M. & D. M. Kreps (1979). Martingale and arbitrage in multiperiod securitiesmarkets. J. Economic Theory 20, 381–408.

Hulley, H., S. Miller, & E. Platen (2005). Benchmarking and fair pricing applied to twomarket models. Kyoto Economic Review 74(1), 85–118.

Ingersoll, J. E. (1987). Theory of Financial Decision Making. Studies in Financial Eco-nomics. Rowman and Littlefield.

Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance Stoch. 1(4),293–330.

Kardaras, C. & E. Platen (2010). Minimizing the expected market time to reach a certainwealth level. SIAM J. Financial Mathematics. 1(1), 16–29.

Kelly, J. R. (1956). A new interpretation of information rate. Bell Syst. Techn. J. 35, 917–926.

Khanna, A. & M. Kulldorff (1999). A generalization of the mutual fund theorem. FinanceStoch. 3(2), 167–185.

Latane, H. (1959). Criteria for choice among risky ventures. J. Political Economy 38, 145–

457

155.

Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility. Finance Press, NewportBeach.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stockportfolios and capital budgets. Rev. Econom. Statist. 47, 13–37.

Loewenstein, M. & G. A. Willard (2000). Local martingales, arbitrage, and viability: Freesnacks and cheap thrills. Econometric Theory 16(1), 135–161.

Long, J. B. (1990). The numeraire portfolio. J. Financial Economics 26, 29–69.

Markowitz, H. (1952). Portfolio selection. J. Finance VII(1), 77–91.

Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investment. Wiley,New York.

Markowitz, H. (1976). Investment for the long run: New evidence for an old rule. J. Fi-nance XXXI(5), 1273–1286.

Marquardt, T., E. Pl., & J. Jaschke (2008). Valuing guaranteed minimum death benefit op-tions in variable annuities under a benchmark approach. Technical report, University ofTechnology, Sydney. QFRC Research Paper 221.

Merton, R. C. (1973a). An intertemporal capital asset pricing model. Econometrica 41, 867–888.

458

Merton, R. C. (1973b). Theory of rational option pricing. Bell J. Econ. Management Sci. 4,141–183.

Miller, S. & E. Platen (2005). A two-factor model for low interest rate regimes. Asia-PacificFinancial Markets 11(1), 107–133.

Miller, S. & E. Platen (2008). Analytic pricing of contingent claims under the real worldmeasure. Int. J. Theor. Appl. Finance 11(8), 841–867.

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica 3, 768–783.

Novikov, A. A. (1972). On an identity for stochastic integrals. Theory Probab. Appl. 17,717–720.

Platen, E. (1997). A non-linear stochastic volatility model. Technical report, Australian Na-tional University, Canberra, Financial Mathematics Research Reports. FMRR 005-97.

Platen, E. (2001). A minimal financial market model. In Trends in Mathematics, pp. 293–301. Birkhauser.

Platen, E. (2002). Arbitrage in continuous complete markets. Adv. in Appl. Probab. 34(3),540–558.

Platen, E. (2005). An alternative interest rate term structure model. Int. J. Theor. Appl. Fi-nance 8(6), 717–735.

Platen, E. (2006). A benchmark approach to finance. Math. Finance 16(1), 131–151.

459

Platen, E. (2008). Law of the minimal price. Technical report, University of Technology,Sydney. QFRC Research Paper 215.

Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32, 122–136.

Revuz, D. & M. Yor (1999). Continuous Martingales and Brownian Motion (3rd ed.).Springer.

Roll, R. (1973). Evidence on the ”Growth-Optimum” model. J. Finance 28(3), 551–566.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. J. Economic Theory 13,341–360.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditionsof risk. J. Finance 19, 425–442.

Sharpe, W. F. (1966). Mutual fund performance. J. Business 39, 119–138.

Shiga, T. & S. Watanabe (1973). Bessel diffusion as a one parameter family of diffsuionprocesses. Z. Wahrsch. Verw. Gebiete 27, 37–46.

Thorp, E. O. (1972). Portfolio choice and the Kelly criterion. In Proceedings of the 1971Business and Economics Section of the American Statistical Association, Volume 21,pp. 5–224.

Tobin, J. (1958). Liquidity preference as behaviour towards risk. Rev. of Economic Stud-ies 25(2), 65–86.

460