A 40 mV /4 uW CMOS Colpitts Oscillator with Additional Positive Feedback at 2.12 GHz

Post on 02-Jan-2016

39 views 1 download

Tags:

description

A 40 mV /4 uW CMOS Colpitts Oscillator with Additional Positive Feedback at 2.12 GHz. Rodrigo Eduardo Rottava Fernando Rangel de Sousa. Outline. Introduction Proposed Topology Analysis Design Post-layout Simulations Conclusions. Introduction. - PowerPoint PPT Presentation

Transcript of A 40 mV /4 uW CMOS Colpitts Oscillator with Additional Positive Feedback at 2.12 GHz

Brasília, September 1st 2012

rodrigorottava@ieee.orgrangel@ieee.org

LCI - UFSC

Integrated Circuits Laboratory – Tecnological CenterDepartment of Electrical EngineeringFederal University of Santa Catarina

A 40 mV/4 uW CMOS Colpitts Oscillator with Additional

Positive Feedback at 2.12 GHz

Rodrigo Eduardo RottavaFernando Rangel de Sousa

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org 2

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org 3

Introduction

The aim: new topology to reduce power consumption and supply voltage of radio-frequency oscillators.

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Introduction

The aim: new topology to reduce power consumption and supply voltage of radio-frequency oscillators.

How: to add a new positive feedback technique in a classical Colpitts oscillator.

3

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Introduction

The aim: new topology to reduce power consumption and supply voltage of radio-frequency oscillators.

How: to add a new positive feedback technique in a classical Colpitts oscillator.

Applications: WBAN’s (ultra-low power consumption).

3

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

4

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Colpitts Oscillator

5

High level representation

Oscillation Criteria:

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Colpitts Oscillator

5

High level representation

Oscillation Criteria:

Colpitts Oscillator

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Colpitts Oscillator

5

High level representation

Oscillation Criteria:

Colpitts Oscillator

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Adding Feedback

6

Source admittance Lg :

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Adding Feedback

6

Source admittance Lg :

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Adding Feedback

6

Source admittance Lg :

By using those two feedback sources it is possible to reduce the bias current.

Proposed topology.

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

7

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

Circuit Losses

Small-signal representation

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

Circuit Losses

Small-signal representation

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

Circuit Losses

Small-signal representation

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

Circuit Losses

Small-signal representation

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Small-Signal Representation

Proposed topology

8

Circuit Losses

Small-signal representation

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Required gms

Total source transconductance:

Total drain transconductance:

9

Circuit Losses

The required gms in order to start-up the oscillator:

1st oscillation criterion:

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Oscillation Frequency

10

The oscillation frequency is given by: where:

2nd oscillation criterion:

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

11

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

Two strategies to reduce the required gms were studied.

11

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

Two strategies to reduce the required gms were studied.

11

a) Optimum capacitor ratio:

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

12

b) Gate inductive degeneration:

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

12

b) Gate inductive degeneration:

For |α|, |β| < 0

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Reducing the required gms

Required gms:

12

b) Gate inductive degeneration:

For |α|, |β| < 0

Nevertheless, for

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Effect of Lg

Effect of Lg on the input conductance of theone-port network.

13

Parameters Value

gms 4.5 mS

gmd 1.5 mS

gmg 2.5 mS

Cgs 100 fF

Cgd 100 fF

C1 540 fF

C2 700 fF

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Effect of Lg

Effect of Lg on the input conductance of theone-port network.

13

Parameters Value

gms 4.5 mS

gmd 1.5 mS

gmg 2.5 mS

Cgs 100 fF

Cgd 100 fF

C1 540 fF

C2 700 fF

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

14

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

Gate Inductor

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

Gate InductorOptimum

Capacitive Ratio

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

Gate InductorOptimum

Capacitive Ratio

Minimum gms?

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

Gate InductorOptimum

Capacitive Ratio

Minimum gms?

Decrease VDD

No

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Design Flow

15

DC Characterization

Gate InductorOptimum

Capacitive Ratio

Minimum gms?

Gate InductorNo

Optimized Low-Voltage Oscillator

Yes

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Specifications

16

• Oscillator at 2.4 GHz in CMOS 130 nm using a zero VTH transistor.

• Buffer in order to adapte the oscillator with the spectrum analyzer.

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Specifications

16

• Oscillator at 2.4 GHz in CMOS 130 nm using a zero VTH transistor.

• Buffer in order to adapte the oscillator with the spectrum analyzer.

Oscillator Core

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Specifications

16

• Oscillator at 2.4 GHz in CMOS 130 nm using a zero VTH transistor.

• Buffer in order to adapte the oscillator with the spectrum analyzer.

Buffer

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Specifications

16

• Oscillator at 2.4 GHz in CMOS 130 nm using a zero VTH transistor.

• Buffer in order to adapte the oscillator with the spectrum analyzer.

Spectrum Analyzer

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Parameters

17

Transistor Parameter VDD = 40 mV

Value

gms 4.50 mS

gmd 1.52 mS

gmg 2.50 mS

Cgs 103 fF

Cgd 102 fF

Circuit Parameters Value

C1 541 fFC2 704 fFC3 10 pFC4 40 pFL1 9.18 nH

LRFC 10 nHLg 12 nH

M1 (zero VTH) 200u/400nM2 (nfet_rf) 50u/120n

R1 74 kΩIB 3 mA

VB 1.5 V

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Parameters

17

Transistor Parameter VDD = 40 mV

Value

gms 4.50 mS

gmd 1.52 mS

gmg 2.50 mS

Cgs 103 fF

Cgd 102 fF

Circuit Parameters Value

C1 541 fFC2 704 fFC3 10 pFC4 40 pFL1 9.18 nH

LRFC 10 nHLg 12 nH

M1 (zero VTH) 200u/400nM2 (nfet_rf) 50u/120n

R1 74 kΩIB 3 mA

VB 1.5 V

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Parameters

17

Transistor Parameter VDD = 40 mV

Value

gms 4.50 mS

gmd 1.52 mS

gmg 2.50 mS

Cgs 103 fF

Cgd 102 fF

Circuit Parameters Value

C1 541 fFC2 704 fFC3 10 pFC4 40 pFL1 9.18 nH

LRFC 10 nHLg 12 nH

M1 (zero VTH) 200u/400nM2 (nfet_rf) 50u/120n

R1 74 kΩIB 3 mA

VB 1.5 V

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Final Layout

Technology: IBM 130 nm.

M1 = Zero-VTH transistor

Area: 0.9 mm²

L1 LRFC

Lg

18

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Final Layout

Technology: IBM 130 nm.

M1 = Zero-VTH transistor

Area: 0.9 mm²

18

M1

M2

IB

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Final Layout

Technology: IBM 130 nm.

M1 = Zero-VTH transistor

Area: 0.9 mm²

VDD GND

RF OUTB1 B2

18

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

19

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Post-layout Simulation

Transient Simulation (loaded oscillator)Output voltage and drain current

20

Vout

ID

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Post-layout Simulation

Transient Simulation (loaded oscillator)Output voltage and drain current

20

Vout

ID

30 mV

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Post-layout Simulation

Transient Simulation (loaded oscillator)Output voltage and drain current

20

Vout

IDVDD ID = 4 µW

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Post-layout Simulation

Phase Noise Simulation21

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Comparative Table

[2] T. Brown, F. Farhabakhshian, A. Guha Roy, T. Fiez, and K. Mayaram.

[3] H.-H. Hsieh and L.-H. Lu.

[4] K. Kwok and H. Luong.

22

Parameters [2] [3]a [3]b [4] This Work

CMOS Technology (nm) 130 180 180 180 130

Supply Voltage (mV) 475 600 400 350 40

Frequency (GHz) 4.90 5.60 5.60 1.40 2.12

DC Power (mW) 2.70 3.00 1.10 1.46 0.004

Phase Noise (dBc/Hz) -136.2¹ -118.0² -114.0² -128.6² -91.5²

FoM (dBc/Hz) 196.3 189 189.0 189.8 182

¹ @ 3 MHz² @ 1 MHz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Comparative Table

[2] T. Brown, F. Farhabakhshian, A. Guha Roy, T. Fiez, and K. Mayaram.

[3] H.-H. Hsieh and L.-H. Lu.

[4] K. Kwok and H. Luong.

22

Parameters [2] [3]a [3]b [4] This Work

CMOS Technology (nm) 130 180 180 180 130

Supply Voltage (mV) 475 600 400 350 40

Frequency (GHz) 4.90 5.60 5.60 1.40 2.12

DC Power (mW) 2.70 3.00 1.10 1.46 0.004

Phase Noise (dBc/Hz) -136.2¹ -118.0² -114.0² -128.6² -91.5²

FoM (dBc/Hz) 196.3 189 189.0 189.8 182

¹ @ 3 MHz² @ 1 MHz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Comparative Table

[2] T. Brown, F. Farhabakhshian, A. Guha Roy, T. Fiez, and K. Mayaram.

[3] H.-H. Hsieh and L.-H. Lu.

[4] K. Kwok and H. Luong.

22

Parameters [2] [3]a [3]b [4] This Work

CMOS Technology (nm) 130 180 180 180 130

Supply Voltage (mV) 475 600 400 350 40

Frequency (GHz) 4.90 5.60 5.60 1.40 2.12

DC Power (mW) 2.70 3.00 1.10 1.46 0.004

Phase Noise (dBc/Hz) -136.2¹ -118.0² -114.0² -128.6² -91.5²

FoM (dBc/Hz) 196.3 189 189.0 189.8 182

¹ @ 3 MHz² @ 1 MHz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Comparative Table

[2] T. Brown, F. Farhabakhshian, A. Guha Roy, T. Fiez, and K. Mayaram.

[3] H.-H. Hsieh and L.-H. Lu.

[4] K. Kwok and H. Luong.

22

Parameters [2] [3]a [3]b [4] This Work

CMOS Technology (nm) 130 180 180 180 130

Supply Voltage (mV) 475 600 400 350 40

Frequency (GHz) 4.90 5.60 5.60 1.40 2.12

DC Power (mW) 2.70 3.00 1.10 1.46 0.004

Phase Noise (dBc/Hz) -136.2¹ -118.0² -114.0² -128.6² -91.5²

FoM (dBc/Hz) 196.3 189 189.0 189.8 182

¹ @ 3 MHz² @ 1 MHz

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Outline

• Introduction• Proposed Topology• Analysis• Design• Post-layout Simulations• Conclusions

23

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Conclusions

• Two positive feedback sources + optimization = decrease the power and supply voltage.

24

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Conclusions

• Two positive feedback sources + optimization = decrease the power and supply voltage.

• We have achieved an oscillator with 40 mV of supply voltage and 4 uW of power consumption.

24

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

Errata

25

+

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

A 40 mV/4 uW CMOS Colpitts Oscillatorwith Additional Positive Feedback at 2.12 GHz

Questions

Thank you!

26

A 4

0 m

V/4

uW

CM

OS C

olp

itts

Osc

illato

r w

ith A

ddit

ional

Posi

tive F

eedback

at

2.1

2 G

Hz

LCI - UFSC

Rodrigo E. Rottava and Fernando R. de Sousa – rodrigorottava@ieee.org

ISCAS 2012

27