2 discrete markov chain

Post on 03-Dec-2014

114 views 4 download

Tags:

description

marcov chain process power point

Transcript of 2 discrete markov chain

1

Bab 3 Karlin

2

2-2

3

2-3 Markov Chain Stochastic process that takes values in a

countable set Example: {0,1,2,…,m}, or {0,1,2,…} Elements represent possible “states” Chain “jumps” from state to state

Memoryless (Markov) Property: Given the present state, future jumps of the chain are independent of past history

Markov Chains: discrete- or continuous- time

4

2-4 Discrete-Time Markov Chain

Discrete-time stochastic process {Xn: n = 0,1,2,…}

Takes values in {0,1,2,…} Memoryless property:

Transition probabilities Pij

Transition probability matrix P=[Pij]

1 1 1 0 0 1

1

{ | , ,..., } { | }

{ | }n n n n n n

ij n n

P X j X i X i X i P X j X i

P P X j X i

0

0, 1ij ijj

P P

5

2-5 Chapman-Kolmogorov Equations n step transition probabilities

Chapman-Kolmogorov equations

is element (i, j) in matrix Pn

Recursive computation of state probabilities

{ | }, , 0, , 0nij n m mP P X j X i n m i j

nijP

0

, , 0, , 0n m n mij ik kj

k

P P P n m i j

0 1, if

0, if ij

i jP

i j

6

2-6 Proof of Chapman-Kolmogorov

7

2-7

State Probabilities – Stationary Distribution

State probabilities (time-dependent)

In matrix form:

If time-dependent distribution converges to a limit

is called the stationary distribution

Existence depends on the structure of Markov chain

11 1

0 0

{ } { } { | } π πn nn n n n j i ij

i i

P X j P X i P X j X i P

0 1π { }, π (π ,π ,...)n n n n

j nP X j

1 2 2 0π π π ... πn n n nP P P

π lim πn

n

π πP

Example: Transforming a Process into a Markov Chain

2-8

9

2-9

10

2-10

11

Example: Camera Inventory

12

2-12

monday

13

2-13

14

2-14

15

2-15

16

2-16

17

2-17

18

2-18

19

2-19

20

2-20 A Markov Chain in Finance

AAA AA A BBB BB B CCC D NRAAA 91.93% 7.46% 0.48% 0.08% 0.04% 0.00% 0.00% 0.00% -AA 0.64% 91.81% 6.76% 0.60% 0.06% 0.12% 0.03% 0.00% -A 0.07% 2.27% 91.69% 5.12% 0.56% 0.25% 0.01% 0.04% -BBB 0.04% 0.27% 5.56% 87.88% 4.83% 1.02% 0.17% 0.24% -BB 0.04% 0.10% 0.61% 7.75% 81.48% 7.90% 1.11% 1.01% -B 0.00% 0.10% 0.28% 0.46% 6.95% 82.80% 3.96% 5.45% -CCC 0.19% 0.00% 0.37% 0.75% 2.43% 12.13% 60.45% 23.69% -D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% -

21

First Step Analysis

22

2-22

23

2-23 Simple FSA

24

2-24

25

2-25

26

2-26

27

2-27

28

2-28

29

2-29 FSA- Extension

30

2-30

31

2-31

32

2-32 Example - 1

What is 1 1 1 1, , , and ?u u v v

See pg 120

33

2-33

34

2-34

35

2-35 Example - 2

Fecundity Model The states are

E0: prepuberty E1: Single E2: Married E3: Divorced E4: Widowed E5: Δ

36

2-36

37

2-37

38

2-38

39

Special MC

40

2-40 1. Two-State MC

41

2-41

42

2-42

43

2-43

44

2-44 Numerical Example

45

2-45 Another Special MC Independent Random Variables Successive Maxima Partial Sums One-Dimensional Random Walks (Player

fortune) Success Runs

46

2-46 Independent Random Variables

47

2-47 Successive Maxima

48

2-48

49

2-49 One-Dimensional Random Walks

50

2-50

51

2-51 Example: Player Fortune

52

2-52

53

2-53

54

2-54

Example: Another Random Walks (r=0)

55

2-55

56

2-56

57

2-57

58

2-58 Example: Success Runs

59

Functionals of Random Walks and Success Runs

Tugas Kelompok

60

Another Look at First Step Analysis

Tugas Kelompok

61

Branching Processes

62

2-62

63

2-63 Example: Electron Multipliers

64

2-64

Example: Neutron Chain Reaction

65

2-65

Example: Survival of Family Names

66

2-66

Example Survival of Mutant Genes

67

2-67

Mean and Variance of Branching Process

68

2-68

69

2-69

70

2-70 Extinction Probabilities

71

2-71

72

2-72

73

2-73

74

Branching Processes and Generating Functions

Tugas Kelompok