11 Fuzzy Rule-Based Models - UNICAMPgomide/courses/IA861/transp/FSE_Chap11.… · 11 Fuzzy...

Post on 13-Feb-2018

234 views 1 download

Transcript of 11 Fuzzy Rule-Based Models - UNICAMPgomide/courses/IA861/transp/FSE_Chap11.… · 11 Fuzzy...

11 Fuzzy Rule-BasedModels

Fuzzy Systems EngineeringToward Human-Centric Computing

11.1 Fuzzy rules as a vehicle of knowledge representation

11.2 General categories of fuzzy rules and their semantics

11.3 Syntax of fuzzy rules

11.4 Basic functional modules

11.5 Types of rule-based systems and architectures

11.6 Approximation properties of fuzzy rule-based models

11.7 Development of rule-based systems

Contents

Pedrycz and Gomide, FSE 2007

11.8 Parameter estimation procedure for functionalrule-based systems

11.9 Design of rule-based systems: consistency,completeness and the curse of dimensionality

11.10 Course of dimensionality in rule-based systems

11.11 Development scheme of fuzzy rule-based models

Pedrycz and Gomide, FSE 2007

11.1 Fuzzy rules as a vehicle ofknowledge representation

Pedrycz and Gomide, FSE 2007

Rule ≡ conditional statement

• If ⟨ input variable is A ⟩ then ⟨ output variable is B ⟩

– A and B: descriptors of pieces of knowledge

– rule: expresses a relationship between inputs and outputs

• Example

– If ⟨ the temperature is high ⟩ then ⟨ the electricity demand is high ⟩

• If and then parts ⟨.......⟩ formed by information granules

– sets– rough sets– fuzzy sets

Pedrycz and Gomide, FSE 2007

Rule-based system/model (FRBS)

• FRBS is a family of rules of the form

If ⟨ input variable is Ai ⟩ then ⟨ output variable is Bi ⟩

i = 1, 2,..., c

Ai and Bi are information granules

• More complex rules

If ⟨ input variable1 is Ai ⟩ and ⟨ input variable2 is Bi ⟩ and ..... then ⟨ output variable is Zi ⟩

– multidimensional input space (Cartesian product of inputs)– individual inputs aggregated by the and connective– highly parallel, modular granular model

Pedrycz and Gomide, FSE 2007

11.2 General categories of fuzzyrules and their semantics

Pedrycz and Gomide, FSE 2007

Multi-input multi-output fuzzy rules

• If X1 is A1 and X2 is A2 and ..... and Xn is An

then Y1 is B1 and Y2 is B2 and ..... and Ym is Bm

Xi = variables whose values are fuzzy sets Ai

Yj = variables whose values are fuzzy sets Bj

Ai on Xi, i = 1, 2,...,n

Bj on Yj, j = 1, 2,...,m

• No loss of generality if we assume rules of the form

If X is A and Y is B then Z is C

Pedrycz and Gomide, FSE 2007

Certainty-qualified rules

• If X is A and Y is B then Z is C with certaintyµ

µ ∈[0,1]

µ : degree of certainty of the rule

µ = 1 rule is certain

Pedrycz and Gomide, FSE 2007

Gradual rules

• the more X is A the more Y is B

– relationships between changes in X and Y

– captures tendency between information granules

• Examples:

the higherthe income, the higherthe taxes

the lower the temperature, the higherenergy consumption

Pedrycz and Gomide, FSE 2007

Functional fuzzy rules

• If X is Ai then y = f (x,ai)

f : X → Y

x∈Rn

• Rule: confines the function to the support of granule Ai

f : linear or nonlinear (neural nets, etc..)

• Highly modular models

Pedrycz and Gomide, FSE 2007

11.3 Syntax of fuzzy rules

Pedrycz and Gomide, FSE 2007

Backus-Naur form (BNF)

⟨ If_then_rule⟩ ::= if ⟨antecedent⟩ then⟨consequent⟩{ ⟨certainty⟩}⟨gradual_rule ⟩ ::= ⟨word⟩ ⟨antecedent⟩⟨word⟩ ⟨consequent⟩

⟨word⟩ ::= ⟨more⟩ { ⟨less⟩}⟨antecedent⟩ ::= ⟨expression⟩⟨consequent⟩ ::= ⟨expression⟩⟨expression⟩ ::= ⟨disjunction⟩{and ⟨disjunction⟩}⟨disjunction⟩ ::= ⟨variable⟩{or⟨variable⟩}

⟨variable⟩ ::= ⟨attribute⟩ is ⟨value⟩⟨certainty⟩ ::= ⟨none⟩{certainty µ∈[0,1]}

Pedrycz and Gomide, FSE 2007

Construction of computable representations

Main steps:

1. specification of the fuzzy variables to be used

2. association of the fuzzy variables using fuzzy sets

3. computational formalization of each rule using fuzzyrelations and definition of aggregation operator to combinerules together

Pedrycz and Gomide, FSE 2007

11.4 Basic functionalmodules of FRBS

Pedrycz and Gomide, FSE 2007

Inpu

t Int

erf

ace Rule Base

Data Base

Fuzzy Inference O

utp

ut I

nte

rfac

e

X Y

General architecture of FRBS

Fuzzy if-then rules(input-output relationship)

Parametersof the FRBS

Process inputs and rules(approximate reasoning)

Pedrycz and Gomide, FSE 2007

Input interface

• (attribute) of (input) is (value)

the temperature of the motor is high

• Canonical (atomic) form

p: X is A temperature (motor) is highX A

fuzzy set

Low Medium High

x (°C)Pedrycz and Gomide, FSE 2007

Multiple fuzzy inputs: conjunctive canonical form

p : X1 is A1 and X2 is A2 and..... and Xn is An conjunctive canonical form

Xi are fuzzy (linguistic) variables

Ai : fuzzy sets on Xi

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation P on X1×X1×... Xn

)()()()()(1

221121 ii

n

innn xATxtAtxtAxAx,,x,xP

=== KK

p : (X1, X2 , ....., Xn) is P

t (T) = t-norm

Pedrycz and Gomide, FSE 2007

0 5 100

10

20

x

y

(b) Contours of P

Example

• Fuzzy relation associated with (X,Y) is P

• Triangular fuzzy sets A1(x,4,5,6) = A, A2(y,8,10,12) = B

• t-norm: algebraic product

P

Pedrycz and Gomide, FSE 2007

q : X1 is A1 or X2 is A2 or ..... or Xn is An disjunctive canonical form

Xi are fuzzy (linguistic) variables

Ai : fuzzy sets on Xi

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation Q on X1×X1×... Xn

)()()()()(1

221121 ii

n

innn xASxsAsxsAxAx,,x,xQ

=== KK

q : (X1, X2 , ....., Xn) is Q

s (S) = t-conorm

Multiple fuzzy inputs: disjunctive canonical form

Pedrycz and Gomide, FSE 2007

Example

• Fuzzy relation associated with (X,Y) is Q

•Triangular fuzzy sets A1(x,4,5,6) = A, A2(y,8,10,12) = B

• t-conorm: probabilistic sum

Q

0 5 100

10

20

x

y

(d) Contours of Q

Pedrycz and Gomide, FSE 2007

Rule base

• Fuzzy rule: If X is A then Y is B ≡ relationship between X and Y

• Semantics of the rule is given by a fuzzy relation R on X×Y

• R determined by a relational assignment

R(x,y) = f (A(x),B(y)) ∀(x, y)∈X×Y

f : [0,1]2 → [0,1]

• In general f can be

– fuzzy conjunction: ft– fuzzy disjunction: fs– fuzzy implication: fi

Pedrycz and Gomide, FSE 2007

Choose a t-norm t and define:

R(x,y) ≡ ft (x,y) = A(x) t B(y) ∀(x,y) ∈ X×Y

Examples:

• t = min

Rc(x,y) ≡ fc (x,y) = min[A(x) t B(y)] (Mamdani)

• t = algebraic product

Rp(x,y) ≡ fp (x,y) = A(x)B(y) (Larsen)

Fuzzy conjunction

Pedrycz and Gomide, FSE 2007

Rc(x,y) = min {A(x), B(y)}

∀ (A(x), B(y))∈[0,1]2

Rc(x,y) = min {A(x), B(y)}A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Example: t = min

Pedrycz and Gomide, FSE 2007

Rp(x,y) =A(x)B(y)

∀ (A(x), B(y))∈[0,1]2

Rp(x,y) = A(x)B(y)A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Example: t = algebraic product

Pedrycz and Gomide, FSE 2007

Choose a t-conorm s and define:

Rs(x,y) ≡ fs(x,y) = A(x) s B(y) ∀(x,y) ∈ X×Y

Examples:

• s = max

Rm(x,y) ≡ fm (x,y) = max[A(x) t B(y)]

• s = Lukasiewicz t-conorm

Rl (x,y) ≡ fl (x,y) = min[1, A(x) + B(y)]

Fuzzy disjunction

Pedrycz and Gomide, FSE 2007

Example: s = max

Rl (x,y) = max{A(x), B(y)}

∀ (A(x), B(y))∈[0,1]2

Rl (x,y) = max {A(x), B(y)}A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Pedrycz and Gomide, FSE 2007

Example: s = Lukasiewicz

Rc(x,y) = min{1, A(x)+B(y)}

∀ (A(x), B(y))∈[0,1]2

Rc(x,y) = min{1, A(x)+B(y)}A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Pedrycz and Gomide, FSE 2007

Fuzzy implication

• Choose a fuzzy implication fi and define:

Ri(x,y) ≡ fi (x,y) ∀(x,y) ∈ X×Y

• fi : [0,1]2 → [0,1] is a fuzzy implication if:

1. B(y1) ≤ B(y2) ⇒ fi (A(x), B(y1)) ≤ fi (A(x), B(y2)) monotonicity 2nd argument

2. fi (0, B(y)) = 1 dominance of falsity

3. fi (1, B(y)) = B(y) neutrality of truth

Pedrycz and Gomide, FSE 2007

• Further requirements may include:

4. A(x1) ≤ A(x2) ⇒ fi (A(x1), B(y)) ≥ fi (A(x2), B(y)) monotonicity 1st argument

5. fi (A(x1), fi (A(x2), B(y)) = fi (A(x2), fi (A(x1), B(y)) exchange

6. fi (A(x), A(x)) = 1 identity

7. fi (A(x), B(y)) = 1 ⇔ A(x) ≤ B(y) boundary condition

8. fi is a continuous function continuity

Pedrycz and Gomide, FSE 2007

λ++λ+−=λ )(1

)()1()(11min))()((

xA

yBxA,yB,xAf

]))()(1(1[min))()(( 1 w/www yBxA,yB,xAf +−=

=otherwise0

)()(if1))()((

yBxAyB,xAfa

=otherwise)(

)()(if1))()((

yB

yBxAyB,xAfg

= otherwise)(

)()()(if1

))()((xA

yByBxA

yB,xAfe

)]()(1[max))()(( yB,xAyB,xAfb −=

Name Definition Comment

Lukasiewicz fl(A(x), B(y)) = min [1, 1 − A(x) + B(y)]

Pseudo-Lukasiewicz λ > -1

Pseudo-Lukasiewicz w > 0

Gaines

Gödel

Goguen

Kleene

Reichenbach

Zadeh

Klir-Yuan

)]()()(1))()(( yBxAxAyB,xAfr +−=

))]()((min)(1[max))()(( yB,xA,xAyB,xAfz −=

)()()(1))()(( 2 yBxAxAyB,xAfk +−=

Examples of fuzzy implications

Pedrycz and Gomide, FSE 2007

Example: fl = Lukasiewicz

Rl (x,y) = min{1, 1–A(x)+B(y)}

∀ (A(x), B(y))∈[0,1]2

Rl (x,y) = min{1, 1–A(x)+B(y)}A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Pedrycz and Gomide, FSE 2007

Example: fk = Klir–Yuan

Rk (x,y) = 1–A(x)+A(x)2B(y)

∀ (A(x), B(y))∈[0,1]2

Rk (x,y) = 1–A(x)+A(x)2B(y)A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Pedrycz and Gomide, FSE 2007

• Categories of fuzzy implications:

1. s-implications

zLukasiewic)}()(11min{))(),((

Kleene)]()(1max[))(),((

)()()())(),((

yBxA,yBxAf

yB,xAyBxAf

y,xysBxAyBxAf

g

b

is

+−=

−=

×∈∀= YX

2. r-implications

Gödel)()()(

)()(if1))(),((

min

)()]()(|]10[sup[))(),((

>≤

=

=

×∈∀≤∈=

yBxAyB

yBxAyBxAf

t

y,xyBctxA,cyBxAf

g

ir YX

Pedrycz and Gomide, FSE 2007

Semantics of gradual rules

x

A(x)

B(y)

y

1.0 1.0

BRd

the more X is A, the moreY is B ⇒ B(y) ≥ A(x) ∀x∈X and ∀y∈Y

BRd= { y∈Y |B(y) ≥ A(x)} for each x∈X

Pedrycz and Gomide, FSE 2007

Example: Rd = fa = Gaines

=otherwise0

)()(if1),(

xAyByxRd

Rd(x,y)∀ (A(x), B(y))∈[0,1]2

Rd (x,y)A(x) = A(x,3,5,7)B(y) = B(y,3,5,7)

00.2

0.40.6

0.81

0

0.5

10

0.2

0.4

0.6

0.8

1

A(x)

(a) Gradual rule Rd = fa

B(y)

Pedrycz and Gomide, FSE 2007

Main types of rule bases

• Fuzzy rule base ≡ { R1, R2,....,RN} ≡ finite family of fuzzy rules

• Fuzzy rule base can assume various formats:

1. fuzzy graph

Ri: If X is Ai then Y is Bi is a fuzzy granule in X×Y, i = 1,...,N

2. fuzzy implication rule base

Ri: If X is Ai then Y is Bi is fuzzy implication, i = 1,...,N

3. functional fuzzy rule base

Ri: If X is Ai then y = fi(x) is a functional fuzzy rule, i = 1,...,N

Pedrycz and Gomide, FSE 2007

Fuzzy graph

• Fuzzy rule base R ≡ collection of rules R1, R2,....,RN

• Each fuzzy rule Ri is a fuzzy granule (point)

• Fuzzy graph ≡ R is a collection of fuzzy granules

• granular approximation of a function

• R= R1 or R2 or....or RN

• general form

)(11

iN

ii

N

ii BARR ×==

==UU

)]()([),(1

ytBxASyxR ii

N

i ==

Pedrycz and Gomide, FSE 2007

Point

0 2 4 6 8 100

2

4

6

8

10

x

(b)

P

0 2 4 6 8 100

1

x

A(x

)

(c)

A

0

2

4

6

8

10

01

(a)

B(y)

By

Point P in X×YP = A×B

A is a singleton in XB is a singleton in Y

Pedrycz and Gomide, FSE 2007

Granule

0 2 4 6 8 100

2

4

6

8

10

xy

(b)

G

0 2 4 6 8 100

1

x

A(x

)(c)

A

0

2

4

6

8

10

01

(a)

B(y)

B

Granule G in X×YG = A×B

A is an interval in XB is an interval in Y

Pedrycz and Gomide, FSE 2007

Fuzzy granules ≡ fuzzy points

0 5 100

2

4

6

8

10

x

y

R

(b) Fuzzy granule R

0 2 4 6 8 100

1

x

A(x

)

(c)

A

0

2

4

6

8

10

01

(a)

B(y)

B

fuzzy granule R in X×YR = A×B

A is a fuzzy set on XB is a fuzzy set on Y

Pedrycz and Gomide, FSE 2007

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

(b) Fuzzy granules Ri

R1

R2

R3

R4

R5

y

0 2 4 6 8 100

1

x

(c)

A1 A2 A3 A4 A5

0

2

4

6

8

10

01

(a)

B(y)

B1

B2

B3

B4

B5

y

Fuzzy rule base as a set fuzzy granules

Ri = Ai×Bi

Pedrycz and Gomide, FSE 2007

0 2 4 6 8 10 120

2

4

6

8

10

12

x

y

(a) function y = f(x)

f

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

x

y

(b)Granular approximation of y = f(x)

R

R1

R2

R3

R4

R5 R6R7

R8

Graph of a function f and its granular approximation R

f R

Ri = Ai×Bi

Pedrycz and Gomide, FSE 2007

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

(b)Fuzzy rule base as a fuzzy graph (t = min)

R = Union Ri

y

Fuzzy rule base and fuzzy graph

Example 1

Ri = Ai×Bi ⇒ Ri(x,y) = min [Ai(x), Bi(y)]

R = ∪ Ri ⇒ R(x,y) = max [Ri(x,y), i = 1,..., N ]

Pedrycz and Gomide, FSE 2007

Fuzzy rule base and fuzzy graph

Example 2

Ri = Ai t Bi ⇒ Ri(x,y) = Ai(x) Bi(y)

R = ∪ Ri ⇒ R(x,y) = max [Ri(x,y), i = 1,..., N ]

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

(d) Fuzzy rule base as a fuzzy graph (t = product)

R = Union Ri

y

Pedrycz and Gomide, FSE 2007

Fuzzy implication

• Fuzzy rule base R ≡ collection of rules R1, R2,....,RN

• Each fuzzy rule Ri is a fuzzy implication

• Fuzzy rule base R is a collection of fuzzy relations

• relation R is obtained using intersection

• R= R1 and R2 and....and RN

• general form

)(111

iN

ii

N

ii

N

ii BAfRR III

===⇒===

))()((1

yB,xAfTR iii

N

i==

Pedrycz and Gomide, FSE 2007

Fuzzy rule as an implication

0 2 4 6 8 100

2

4

6

8

10

xy

(b) Lukasiewicz implication R

R

0 2 4 6 8 100

1

x

A(x

)

(c)

A

0

2

4

6

8

10

01

(a)

B(y)

B

fuzzy rule R in X×YR = fl (A,B)Lukasiewicz implication

Pedrycz and Gomide, FSE 2007

Fuzzy rule base and fuzzy implication

Example 1a

Ri = fl (A,B)⇒ Ri(x,y) = min [1, 1 –Ai(x) + Bi(y)] Lukasiewicz implication

R = ∩ Ri ⇒ R(x,y) = min [Ri(x,y), i = 1,..., 5] min t-norm

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

y

(b) Fuzzy rule base as Lukasiewicz implication (t = min)

Pedrycz and Gomide, FSE 2007

Fuzzy rule base and fuzzy implication

Example 1b

Ri = fl (A,B)⇒ Ri(x,y) = min [1, 1 –Ai(x) + Bi(y)] Lukasiewicz implication

R = ∩ Ri ⇒ R(x,y) = R1(x,y) tl R2(x,y) tl .... tl Ri(x,y) Lukasiewicz t-norm

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

y

(b) Fuzzy rule base as Lukasiewicz implication (t = min)

Pedrycz and Gomide, FSE 2007

Fuzzy rule base and fuzzy implication

Example 2a

Ri = fz(A,B)⇒ Ri(x,y) = max [1 –Ai(x), min(Ai(x), Bi(y)] Zadeh implicationR = ∩ Ri ⇒ R(x,y) = min [Ri(x,y), i = 1,..., 5] min t-norm

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

y

(b) Fuzzy rule base as Zadeh implication (t = min)

Pedrycz and Gomide, FSE 2007

Fuzzy rule base and fuzzy implication

Example 2b

Ri = fz(A,B)⇒ Ri(x,y) = max [1 –Ai(x), min(Ai(x), Bi(y)] Zadeh implicationR = ∩ Ri ⇒ R(x,y) = R1(x,y) tl R2(x,y) tl .... tl Ri(x,y) Lukasiewicz t-norm

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

x

y

(d) Fuzzy rule base as Zadeh implication (t = Lukasiewicz)

Pedrycz and Gomide, FSE 2007

Data base

• Data base contains definitions of:– universes– scaling functions of input and output variables– granulation of the universes membership functions

• Granulation– granular constructs in the form of fuzzy points– granules along different regions of the universes

• Construction of membership functions– expert knowledge– learning from data

Pedrycz and Gomide, FSE 2007

Granulation

X X

granular constructs inthe form of fuzzy points

granules along differentregions of the universes

Pedrycz and Gomide, FSE 2007

Fuzzy inference

• Basic idea of inference

0 2 4 6 8 10 120

2

4

6

8

10

12

x

y

(a)

I

ac

f

a

b

x = a y = f (x) y = b

b = ProjY (ac ∩ f )

b = ProjY ( I )

Pedrycz and Gomide, FSE 2007

Inference involves operations with sets

x = A y = f (x) B = f (A) ={ f (x), x∈A}

B = ProjY (Ac ∩ f )

B = ProjY ( I ) 0 2 4 6 8 10 12

0

2

4

6

8

10

12

x

y

(b)

I

Ac

A

a b

B

c

d

f

Pedrycz and Gomide, FSE 2007

Inference involving sets and relations

x is A(x,y) is Ry is B

B = ProjY (Ac ∩ R )

B = ProjY ( I )

f

0 2 4 6 8 10 120

2

4

6

8

10

12

x

y

(a)

I

Ac

R

A

B

Pedrycz and Gomide, FSE 2007

Fuzzy inference ands operations with fuzzy sets and relations

X is A (fuzzy set on X)(X,Y) is R (fuzzy relation on X×Y)Y is B (fuzzy set on Y)

B = ProjY (Ac ∩ R )

B = ProjY ( I )

f

2 4 6 8 10 12

2

4

6

8

10

12

x

y

(b)

A

B R

I

Ac

)}()({sup)( y,xtRxAyBx X∈

=⇒

Pedrycz and Gomide, FSE 2007

Fuzzy inference

• Compositional rule of inference

X is A (X,Y) is RY is B

X is A(X,Y) is RY is AoR

RAB o=

Pedrycz and Gomide, FSE 2007

procedure FUZZY-INFERENCE (A, R) returns a fuzzy setinput : fuzzy relation: R

fuzzy set: Alocal: x, y: elements of X and Y

t: t-norm

for all x and y doAc(x,y) ← A(x)

for all x and y doI(x,y) ← Ac(x,y) t R(x,y)

B(y) ← supx I(x,y) return B

Fuzzy inference procedure

Pedrycz and Gomide, FSE 2007

Example: compositional rule of inference

Pedrycz and Gomide, FSE 2007

Example: fuzzy inference with fuzzy graph

Pedrycz and Gomide, FSE 2007

11.5 Types of rule-basedsystems and architectures

Pedrycz and Gomide, FSE 2007

Linguistic fuzzy models

P: X is A and Y is B input

R1: If X is A1 and Y is B1 then Z is C1

......................Ri: If X is Ai and Y is Bi then Z is Ci rule base

.......................RN: If X is AN and Y is BN then Z is CN

Z: Z is C output

• all fuzzy sets A, B, Ai,s and Bi,sare given• rule and connectives (and, or) with known semantics• membership function of fuzzy set C = ??

Pedrycz and Gomide, FSE 2007

min-max fuzzy models

Assume

P: X is A and Y is B P(x,y) = min{A(x), B(y)}

Ri: If X is Ai and Y is Bi then Z is Ci Ri(x,y,z) = min{Ai(x), Bi(y), Ci(z)}

i = 1,..., N

)]}1),(max(),({min[sup)(

1

,...,Niz,y,xRy,xPzC

RPRPC

iy,x

N

ii

==

===Uoo

Using the compositional rule of inference (t = min)

Pedrycz and Gomide, FSE 2007

rulethiofactivationofdegreetheis

}1),(max{}1)max{()(

)()(

)Poss()]()([sup

)Poss()]()([sup

)]}()()()()({sup)]}(),({min[sup)(

)(111

=∧==∧=

∧∧=′

==∧

==∧

∧∧∧∧==′

=′

′=======

i

iiiii

iiii

iiiy

iiix

iiiy,x

iy,x

i

ii

N

ii

N

ii

N

ii

λ

N,,izCλN,,i,CnmzC

zCnmzC

nB,ByByB

mA,AxAxA

zCyBxAyBxAz,y,xRy,xPzC

RPC

CRPRPRPC

KK

o

ooo UUU

Pedrycz and Gomide, FSE 2007

procedure MIN-MAX-MODEL ( A,B) returns a fuzzy setlocal: fuzzy sets: Ai, Bi, Ci, i =1,.., N

activation degrees: λi

Initialization C = ∅

for i = 1: N domi = max (min (A, Ai))ni = max (min (B, Bi))λi = min (mi, ni)if λi ≠ 0 then Ci

’ = min (λi , Ci) and C = max(C, Ci’)

return C

min-max fuzzy model processing

Pedrycz and Gomide, FSE 2007

Example: min-max fuzzy model processing

Ai Aj Bi Bj A B

mi

mj

ni nj

Ci Cj 1 1 1

nj

mi Ci

Cj’

x y z

Pedrycz and Gomide, FSE 2007

min-max fuzzy model architecture

Poss λ1 Min

Max

A1,B1 C1

Poss λi Min

Ai,Bi Ci

Poss λN Min

AN,BN CN

C (A,B)

Ci’

CN’

C1’

Pedrycz and Gomide, FSE 2007

Special case: numeric inputs

=

= =

=otherwise0

if1)(

otherwise0

if1)( oo yy

yBandxx

xA

Numeric output

iN

iii

N

iiii

v

nm

vnm

z

dzzC

dzzzCz

valuesmodalaverageweighted

)(

)(

ationdefuzzificcentroid)(

)(

1

1

∫∫

=

=

∧=

=Z

Z

Pedrycz and Gomide, FSE 2007

Example

P: X is xo and Y is yo inputs (xo, yo), ∀xo, yo ∈[-2, 2]

R1: If X is A1 and Y is B1 then Z is C1rules

R2: If X is A2 and Y is B2 then Z is C2

N = 2, centroid defuzzification

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

x

Ai(

x)

A1 A2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

y

Bi(

y)

B2 B2

(a) Input and output fuzzy sets

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

z

Ci(

z)

C1 C2

-2-1

01

2

-2

-1

0

1

2

-0.5

0

0.5

x

(b) Input-output mapping

y

z

Pedrycz and Gomide, FSE 2007

min-sum fuzzy models

Assume

P: X is A and Y is B P(x,y) = min{A(x), B(y)}

Ri: If X is Ai and Y is Bi then Z is Ci Ri(x,y,z) = min{Ai(x), Bi(y), Ci(z)}

i = 1,..., N

∑=

′=

∧∧∧∧=′

N

iii

iiiy,x

i

CwzC

zCyBxAyBxAzC

1)(

)]()()()()([sup)(

Using the compositional rule of inference (t = min)

Additive fuzzy models(Kosko, 1992)

Pedrycz and Gomide, FSE 2007

Example: min-sum fuzzy model processing

A i A j Bi Bj A B

mi

mj

ni nj

Ci Cj 1 1 1

nj

mi Ci

’ Cj’

x y z

∑Ci’

Pedrycz and Gomide, FSE 2007

min-sum fuzzy model architecture

Poss λ1 Min

A1,B1 C1

Poss λi Min

Ai,Bi Ci

Poss λN Min

AN,BN CN

C (A,B)

wi

w1

wN

CN’

C1’

Ci’

Pedrycz and Gomide, FSE 2007

Example

P: X is xo and Y is yo inputs (xo, yo), ∀xo, yo ∈[-2, 2]

R1: If X is A1 and Y is B1 then Z is C1rules

R2: If X is A2 and Y is B2 then Z is C2

N = 2 w1 = w2 = 1, centroid defuzzification

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

x

Ai(

x)

A1 A2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

y

Bi(

y)

B2 B2

(a) Input and output fuzzy sets

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

z

Ci(

z)

C1 C2

-2-1

01

2

-2

-1

0

1

2

-0.5

0

0.5

x

(b) Input-output mapping

y

z

Pedrycz and Gomide, FSE 2007

product-sum fuzzy models

1- Product–probabilistic sum

)()(

)()(

1

zCSzC

zCnmzC

i

N

ip

iiii

′=

=′

=

2- Product–sum

∑=

′=

=′

N

ii

iiii

zCzC

zCnmzC

1)()(

)()(

-2-1

01

2

-2

-1

0

1

2

-0.5

0

0.5

x

(b) Input-output mapping of product-probabilistic sum model

y

z

-2-1

01

2

-2

-1

0

1

2

-0.5

0

0.5

x

(d) Input-output mapping of product-sum model

y

z

Pedrycz and Gomide, FSE 2007

3 - Bounded product-bounded sum

]10[

}1min{

}10max{

)()(

)()(

1

,a,b

ba,ba

ba,ba

zCzC

zCnmzC

i

N

i

iiii

+=⊕

−+=⊗

′⊕=

⊗⊗=′

=

-2-1

01

2

-2

-1

0

1

2

-1

-0.5

0

0.5

1

x

(c) Input-output mapping of bounded product-bounded sum model

y

z

Pedrycz and Gomide, FSE 2007

Functional fuzzy models

P: X is x and Y is y input

R1: If X is A1 and Y is B1 then z= f1 (x,y)......................

Ri: If X is Ai and Y is Bi then z = fi (x,y) rule base.......................

RN: If X is AN and Y is BN then z= fN (x,y)

λi(x,y) = Ai(x) t Bi(y) t = t-norm degree of activation

output∑

=

===

N

ii

ii

N

iii

y,xλ

λw,y,xfy,xwz

1

1 )(

)()(

Pedrycz and Gomide, FSE 2007

Functional fuzzy model architecture

⊗ w1

f1(x,y)

A1,B1

wi

Ai,Bi

wN

AN,BN

z (x,y)

f2(x,y)

fN(x,y)

×

×

×

Pedrycz and Gomide, FSE 2007

Example 1

P: X is x inputs x ∈ [0, 3]

R1: If X is A1 then z= xrules

R2: If X is A2 then z= – x + 3

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

x

Ai

A1 A2

(a) Antecedent fuzzy sets

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

f1f2

x

y

(b) Consequent functions

Pedrycz and Gomide, FSE 2007

∈+−∈+−+∈

=)32[if3

]21[if)3)(()(

]10(if

21,xx

,xxxAxxA

,xx

z

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

(b) Output of the functional model

output

Pedrycz and Gomide, FSE 2007

Example 2

P: X is x inputs x∈ [0, 3]

R1: If X is A1 then y = – sin(2x)

R2: If X is A2 then y = – 0.5x rules

R3: If X is A3 then y = sin(3x)

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3

(a) Antecedent fuzzy sets

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5-1.5

-1

-0.5

0

0.5

1

1.5(b) output of the functional fuzzy model

y

x

output

Pedrycz and Gomide, FSE 2007

Example 2

P: X is x inputs x∈ [0, 3]

R1: If X is A1 then y = – 1

R2: If X is A2 then y = x rules

R3: If X is A3 then y = 1

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3

(a) Antecedent fuzzy sets

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5-1.5

-1

-0.5

0

0.5

1

1.5

x

y

(c) output of the functional fuzzy model

output

Pedrycz and Gomide, FSE 2007

Gradual fuzzy models

Ri: The more Xis Ai the more Zis Ci

i = 1,..., N

IIN

i

N

ii

iii

iiCCC

xAzCyxR

11)(

otherwise0

)()(if1),(

=αα

==′=

=

Pedrycz and Gomide, FSE 2007

Gradual fuzzy model architecture

Poss α1 Cα1

Min

A1 C1

Poss αi

Ai Ci

Poss αN

AN CN

C x

Ci’

CN’

C1’

Cα1

Cα1

Pedrycz and Gomide, FSE 2007

x z

A1 A2

α2

α1

C1 C2 1 1

α1

α2 C1

’ C2’

Example: gradual fuzzy model processing

Pedrycz and Gomide, FSE 2007

Example

P: X is x inputs x ∈ [0, 3]

R1: The more Xis A1 the more Zis C1

rulesR2: The more Xis A1 the more Zis C1

1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

x

Ai

A1 A2

1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

z

Ci

C1 C2

1 1.5 2 2.5 3 3.5 41

1.5

2

2.5

3

3.5

4

x

z

output

Pedrycz and Gomide, FSE 2007

11.6 Approximation propertiesof fuzzy rule-based models

Pedrycz and Gomide, FSE 2007

• FRBS uniformly approximates continuous functions

– any degree of accuracy

– closed and bounded sets

• Universal approximation with (Wang & Mendel, 1992):

– algebraic product t-norm in antecedent

– rule semantics via algebraic product

– rule aggregation via ordinary sum

– Gaussian membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification

Pedrycz and Gomide, FSE 2007

• Universal approximation when (Kosko, 1992):

– min t-norm in antecedent

– rule aggregation via ordinary sum

– symmetric consequent membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification

(additive models)

Pedrycz and Gomide, FSE 2007

• Universal approximation with (Castro, 1995):

– arbitrary t-norm in antecedent

– rule semantics: r-implications or conjunctions

– triangular or trapezoidal membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification

Pedrycz and Gomide, FSE 2007

11.7 Development of rule-basedsystems

Pedrycz and Gomide, FSE 2007

Expert-based development

• Knowledge provided by domain experts

– basic concepts and variables

– links between concepts and variables to form rules

• Reflects existing knowledge

– can be readily quantified

– short development time

Pedrycz and Gomide, FSE 2007

Example: fuzzy control

FuzzyController

Processre u y+

Ri: If Error is Ai and Change of Error is Bi then Control is Ci

Ri: If e is Ai and de is Bi then u is Ci

Pedrycz and Gomide, FSE 2007

Ri: If e is Ai and de is Bi then u is Ci

Change of Error (de) / Error (e) NM NS ZE PS PM

NB PM NB NB NB NM

NM PM NB NS NM NM

NS PM NS Z NS NM

Z PM NS Z NS NM

PS PM PS Z NS NM

PM PM PM PS PM NM

PB PM PM PM PM NM

r

y

t

e

Pedrycz and Gomide, FSE 2007

Data-driven development

• Given a finite set of input/output pairs

{( xk, yk), k = 1,..., M}

xk = [x1k, x2k,...., xnk] ∈Rn

zk = [xk, yk] ∈Rn+1, k = 1,..., M

• Clustering zk = [xk, yk] ∈Rn+1, k = 1,..., M (e.g. using FCM)

v1, v2,....,vN prototypes/cluster centers

vi ∈ Rn+1, i = 1,..., N

• Idea: fuzzy clusters ≡ fuzzy rules

Pedrycz and Gomide, FSE 2007

Example

R1

v1

v2v3

v4

R2R3

R4

Pedrycz and Gomide, FSE 2007

• Projecting the prototypes in the input and output spaces

v1[y], v2[y],....,vN [y] projections of prototypes in Y

v1[x], v2[x],....,vN [x] projections of prototypes in X

• Ri: If X is Ai then Y is Ci, i = 1,..., N

x

y

x

y

x

y

Pedrycz and Gomide, FSE 2007

11.8 Parameter estimation forfunctional rule-basedsystems

Pedrycz and Gomide, FSE 2007

• Functional fuzzy rules

• Ri: If Xi1 is Ai1 and ... and Xin is Ain then z= aio + ai1x1 + ....+ainxn

i = 1,..., N

• Given input/output data: {( x1, y1), (x2, y2),....,(xM, yM)}

• Let ai = [aio, ai1, ai2,....,ain]T

• Output of functional models

• Output for linear consequents

∑∑

=

===

N

iki

kiik

N

iikiikk

xλw,,fwy

1

1 )(

)()( ax

TT

1

T ]1[ kikikN

iiikk w,,y xzaz == ∑

=

Pedrycz and Gomide, FSE 2007

[ ]

=

=

N

Nkkkk

N

y

a

a

a

zzz

a

a

a

aM

LM

2

1

TT2

T1

2

1

=

=

TT2

T1

T2

T22

T12

T1

T12

T11

2

1

NMMM

N

N

M

Z

y

y

y

zzz

zzz

zzz

y

L

MOMM

L

L

M

Let

and

then y = Za

Pedrycz and Gomide, FSE 2007

Global least squares approach

Mina JG(a) = || y – Za||2

|| y – Za||2 = (y – Za)T (y – Za)

Solution

aopt= Z# y

Z# = (ZT)–1ZT

Pedrycz and Gomide, FSE 2007

Local least squares approach

Solution

aiopt= Zi# y

Zi# = (Zi

T)–1ZiT

=

−=∑=

T

T2

T1

1

2)(JMin

iM

i

i

i

N

iiiL

Z

Z

z

z

z

ayaa

M

Pedrycz and Gomide, FSE 2007

11.9 Design issues of FRBS:Consistency andcompleteness

Pedrycz and Gomide, FSE 2007

Given input/output data: {( x1, y1), (x2, y2),....,(xM, yM)}

dataconsistencycompletenessaccuracy

rules

Issue: quality of the rules

Pedrycz and Gomide, FSE 2007

Completeness of rules

• All data points represented through some fuzzy set

maxi = 1,..., M Ai(xk) > 0 for all k = 1,2,..., M

• Input space completely covered by fuzzy sets

maxi = 1,..., M Ai(xk) > δ for all k = 1,2,..., M

Pedrycz and Gomide, FSE 2007

Consistency of rules

• Rules in conflict

– similar or same conditions

– completely different conclusions

Conditions and Conclusions

Similar Conclusions

Different Conclusions

Similar Conditions rules are redundantrules are in

conflict

Different Conditions

different rules; could be eventually

mergeddifferent rules

Pedrycz and Gomide, FSE 2007

|})()(||)()({|)cons(1

kjkikjM

iki xAxAyByBj,i −⇒−=∑

=

Ri: If X is Ai then Y is Bi

Rj: If X is Aj then Y is Bj

⇒ is an implication induced by some t-norm (r-implication)

))}()(Poss())()({Poss()cons(1

kjkikjM

iki yB,yBxA,xAj,i ⇒=∑

=

Alternatively

∑=

=M

jj,i

Mi

1)cons(

1)cons(

Pedrycz and Gomide, FSE 2007

11.10 The curse of dimensionalityin rule-based systems

Pedrycz and Gomide, FSE 2007

• Curse of dimensionality

– number of variables increase

– exponential growth of the number of rules

• Example

– n variables

– each granulated using p fuzzy sets

– number of different rules = pn

• Scalability challenges

Pedrycz and Gomide, FSE 2007

11.11 Development scheme offuzzy rule-based models

Pedrycz and Gomide, FSE 2007

Accuracy

Stability

Interpretability Knowledge

Representation

• Spiral model of development

– incremental design, implementation and testing

– multidimensional space of fundamental characteristics

Pedrycz and Gomide, FSE 2007