1 ILC ( International Linear Collider ) Asian Region Electrical Design H. Hashiguchi, Nikken...

Post on 23-Dec-2015

217 views 0 download

Tags:

Transcript of 1 ILC ( International Linear Collider ) Asian Region Electrical Design H. Hashiguchi, Nikken...

1

ILC ( International Linear Collider ) Asian Region Electrical Design

H. Hashiguchi, Nikken Sekkei, Co. Ltd.,A. Enomoto, KEK

ILC Mechanical & Electrical Review and CFS Baseline Technical Review2012.3.21-23, CERN

2

Contents

① Electrical Power System② Electrical Grounding System③ Communication Network System

3

Electrical Power System

Design Concepts ・ Reliability   ・ Efficiency・ Cost        

4

Electrical Power System

Site Specific Issues

・ HLRF layout: RDR-like・ Local HV lines: 150 – 500

kV・ Site MV: 66 kV・ Area MV: 6.6 kV

Strawman Baseline forTechnical Design

Phase2 (2010-2012)

SB2009Re-baselining

5

table overall electrical load summary:

Power(MW) Power Facter Power(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

EH

Electrical Power SystemLoad Requirements (Full Power Op., ref. Sep. 2011)

Requirement ( for 500GeV ) 

6

Electrical Power System

Load Requirements (w. Power Factor)

Power Factor Assumption

table overall electrical load summary:

Power(MW) Power Facter Power(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

EH

7

Electric Power Capacitytable overall electrical load summary:

Power(MW) Power Facter Power(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

EH

Electrical Power System

Load Requirements (Capacity)

8Total 300MVA including margin

 

table overall electrical load summary:

Power(MW) Power Facter Power(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

EH

+about 60MVA margin

Electrical Power System

Load Requirements (Capacity)

9

Electrical Power SystemSystem Redundancy (Surface-ground Main Substation)

                

VCT VCT

275KV/66KV

100MVA( in future )

( in future )

275KV/66KV

100MVA275KV/66KV100MVA

275KV/66KV

100MVA275KV/66KV

100MVA

275KV/66KV

100MVA( in future )

( in future )

AH2 AH3 AH4 EH AH2 AH3 AH4 EHAH5 AH6 AH7 AH5 AH6 AH7

Transformer Space For 1TeV system     

 

N ( 3 ) +1 transformer component  

for 500GeV system

① ② ③ +1

275kV Receiving Equipment isAvailable For 1TeV system(Up to 500MVA)

10

                

VCT VCT

275KV/66KV

100MVA( in future )

( in future )

275KV/66KV

100MVA275KV/66KV

100MVA275KV/66KV

100MVA275KV/66KV

100MVA

275KV/66KV

100MVA( in future )

A B

2 Components of

Distribution panel  

( in future )

AH2 AH3 AH4 EH AH2 AH3 AH4 EHAH5 AH6 AH7 AH5 AH6 AH7

Electrical Power SystemSystem Redundancy (Main Substation, cnt.)

11

                66KV power distribution Main line diagram

AH2 AH3 AH4 EH AH5 AH6 AH7

A B

Main SubstationFrom 2 Components of

Distribution panel        

      to Each 66kV

substation

Electrical Power SystemSystem Redundancy (Site Power Distribution)

122 transformers(30MVA ) at Each Hall

table overall electrical load summary:

Power(MW)Power FacterPower(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA,30MVA30MVA( )66kV/6.6kV transformer

EH

Electrical Power SystemSystem Redundancy (Area 66/6.6kV Transformers)

13Keep one Stand-by Transformer(30MVA) at center warehouse on

the ground

table overall electrical load summary:

Power(MW)Power FacterPower(MVA) AH1 AH2 AH3 AH4 AH5 AH6 AH7 AH8

Source e- 4.30 0.9 4.78 4.78

Source e+ 15.04 0.9 16.71 16.71

DR 17.42 0.9 19.36 16.45 2.90

RTML 11.88 0.9 13.20 5.94 0.66 0.66 5.94

ML 97.24 0.9 108.04 22.20 22.20 9.99 9.25 22.20 22.20

BDS 15.25 0.9 16.94 8.47 8.47

Dump 3.95 0.9 4.39 4.39

IR(DH) 0.46 0.9 0.51 0.51

Cryogenics 49.63 0.9 55.14 7.37 7.37 7.96 2.52 1.73 7.96 7.37 7.37

TOTAL 215.17 239.08 35.51 29.57 43.80 18.97 2.90 6.63 0.00 31.12 29.57 35.51

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA30MVA

30MVA,30MVA30MVA( )66kV/6.6kV transformer

EH

Electrical Power SystemSpare 66/6.6kV Transformer

14

One line diagram of 66KV substation with generator

Each substatiosn installed

in access halls

and an experimental hall

66KV/6KV

30MVA

66KV/6KV

30MVA

6 % 6 %

VCB

For RF

500Kvar 500Kvar

×12

space

×8

VCB

×10 ×10

Capacitor for conventional load power factor improvement

Electrical Power System66/6.6kV Substations (@7 underground halls)

15

One line diagram of 66KV substation with

generator

Emergency Generator

On the ground

66KV/6KV

30MVA

66KV/6KV

30MVA

6 % 6 %

VCB

For RF

500Kvar 500Kvar

×12

space

×8

VCB

×10 ×10

6.6kV One main line branches about 10 RF

6.6kV One main line branches about 4 local substation

Emergency load assumption    

Drainage pump , smoke extraction fan , and so forth

Helium gas extraction     system also

prefers to add emergency load

Electrical Power System66/6.6kV Substations (@7 underground halls, cnt.)

16

A

G

Cooling WaterSystem

H H

B

G

C

K K

E

E

LEVEL

Pump

RFSide

CryomoduleSide

Electrical Facilities

A

8000

1000

091

600

5600

010

000

10000

8000

33500

8000

45000

R30000

1000

0

8000 7200

0

35500

1500

0

15000 15000

1500

0

41300

1000

0

4000

0

20000

20000

66kV Substation

Electrical Power System66/6.6kV Substations (@7 underground halls, cnt.)

Floor Plan

17

5000

6000

4500

ductGIS

20000

3000

0

30MTR

Monitoring system

SC F

6.6KV/200V6.6KV/200V

Battery

Monito

ring

syste

m

GIS

30MTR

F SC

Floor layout   plan

Main

ten

an

ce sp

ace

6.6KV/200V6.6KV/200V

Battery

sectionA  -  A ’

60005000

Maintenance space

1000

0

20000

A A ’

Electrical Power System66/6.6kV Substations (@7 underground halls, cnt.)

18

1φ3W6.6KV

/200-100V100KVA

1φ3W6.6KV

/200-100V100KVA

3φ4W6.6KV/400V

200KVA

capacitor Harmonic filter

For RF150KVA

Local substation( each 4 RF )

Power supply for RF( each 1 RF )

Capacitor for RF power factor improvement

Harmonic filter for RF

Electrical Power System6.6kV Local Substations (@Service tunnel)

19

400

1098

4402

5500 60

00

Mesh grounding

6.6kVcables,200V cables

Cables for communicationsPlumbing for heat and cool system

66kV cables

3300 3500

1500

4200

11000

11600

12000

R4000

R7000

Maintenance space

Electrical Power SystemML Tunnel Section

20

160

01

600

100

0

38000

A

Maintenance space

150

0

Beam Tunnel

Service Tunnel

Electrical Power SystemML Tunnel Floor

21

FCU

Pulsegenerator

K l ystron

modulator

RackforRFPower supply for RF

(Each I RF , with Harmonic filter)

RackforRF

150

0

160

01

600

100

01

500

1100 1100 4270

5000

305 1341 432 3385

800

800 106

7

125

1

A

Maintenance space

R4000

R7000

Section Layout

Electrical Power SystemML Tunnel Floor (Detail 1)

22

Pump

Control Panel

FCU

Local substation(each 4 RF)

Panel for grounding

Crystron

Pump

A

160

01

600

100

0

3385 1100 1100 914

800

800

38000

610

100

0

4000

1100

Maintenance space

150

00

R4000

R7000

Section Layout

Electrical Power SystemML Tunnel Floor (Detail 2)

23

A38000

Electrical Power SystemML Tunnel Elevation

24

Pulsegenerator

modulatorRackforRF

Power supply for RF(Each I RF , with Harmonic filter)

RackforRF

RackforRF

Crystron

914 914 914

FCU

200

7

914 914

A

210

0

38000

Electrical Power SystemML Tunnel Elevation (Detail 1)

25

BeamsafetyRack

FCU

A

4000

235

0

914 914

232

4

210

0914

38000

Pulsegenerator

Crystron

RackforRF

RackforRF

Pump

Local substation(each 4 RF)

Panel for grounding

Electrical Power SystemML Tunnel Elevation (Detail 2)

26

Grounding System

Purpose  ・ Avoid influences of electric leakage from other

machines   ・ Produce signal base for information systems ・ Thunder lightning protection

27

Electrical Grounding System

Typical Model of Tunnel Ground System

Mesh grounding ( using arrangement bar )

Panel for Grounding ( for each 38m )

Beam tunnel

AH

Main line for

grounding

Grounding for lightning protection Functional

Grounding

Grounding for SPD

Service lineSPD

(surge protect device)

Main Panel for Grounding

Facilities on the ground

Lightning rod

Reduce Grounding Resistance

Flexible for switching grounding line connection

Lightning Protection On the ground

28

Communication Network System

Design Concept・ Reliability of Network for Information System ・ Reducing Space by Unified wiring

management・ Efficient Network by Unified wiring for

Reducing Construction Cost                

29

Communication Network System

Needs for ILC

① Systems for Communication    ・ internet  ・ telephone ・ pubulic address or paging

 ④  Systems for monitoring  ・ electric power system monitoring  ・ camera monitoring  ・ air condition and pump monitoring   

② Systems for Lineac control

③ Systems for Safety  ・ fire ditection and guide  ・ Radiation safety management

30

Communication Network System

Equipment  

Network infrastructures

panel wiring rack

31

Communication Network System

Overall network system concept

Unified Wiring Networks

Systems for communication

Systems for lineac control

Systems forsafety Systems for

monitoring

Assumed systems based on unified Wiring Networks

with back-up can reduce space.

32

Summary

① Electrical Power System → Electrical Power System is discussed taking account

of reliability , efficiency, and cost.

→ Electrical equipment layout were discussed to determine the cavern size of substations.

 

33

SummaryAsia region electrical design

② Electrical Grounding System   → A grounding system for a hard-rock mountain site

was discussed.

③ Communication Network System → Unified and extended network system was proposed

taking advantage of sufficiently radiation-shielded “Kamaboko-type” service tunnel.  

       

34

Appendix

ILC ‘Area System’- Superconducting Electron/Positron Linear Accelerators-

35

(4) Ring To Main Linac (RTML)

(3) Damping Ring (DR)

(5) Main Linac (ML)

 x 560

(2) Positron (e+) Source (1) Electron (e-) Source(7) Experimental Hall

(6) Beam Delivery System (BDS)

e- Main Linac (ML)  

e+ Main Linac (ML)  

RTML 

RTML 

Beam Delivery System (BDS)

e+ Source

~31 kmExpansion to

~50 km (for 1 TeV)

Damping Ring (DR)

e+ Source

Design Progress from 2005 to 2009Reference Design Report (RDR) published in 2007.

Re-baselining for cost containment undergoing.

36

Baseline Configuration Document

BCD (2005)

Reference Design Report

RDR (2007)

Strawman Baseline forTechnical Design

Phase2 (2010-2012)

SB2009

Current Baseline

Re-baselining

Main Linac (ML) RF Unit in RDR- Twin-tunnel accelerator configuration -

37

AC plug-in power: 150 kWOutput pulse: 120 kV x 130 A = 15.6 MW peak, 1.6 ms, 5 Hz

Averaged output power: 124.8 kWModulator Efficiency: 83%

Power loss: 25.2 kW

Input RF power: ~100 WInput DC pulse: 15.6 MW peak, 1.6 ms, 5 Hz

Output RF pulse: 10 MW peak, 1.565 ms, 5 HzAveraged output power: 78.25 kW

Klystron Efficiency: 65%Power loss: 46.55 kW

Power Loss: ~5.6 kW (7%)

Service Tunnel

Beam Tunnel

e- ML 282 RF unitse+ ML 278 RF units

Total 560 RF units

Field gradient: 31.5 MV/mEnergy gain per RF unit : 850 MeV

(with 22% tuning overhead)

37.956 m

ML RF Unit- Distributed RF System (DRFS) -

38

X

26.336 m (~70%) 11.62 m

~5.4 m (L)

(every 4th units)

35.100 m

(Every 4th Units,

152 m)

Cooling WaterSkid and

Common Electricity

1.6 m (W)

2.438 m (H)

Cryogenic System Configuration in RDR

39

Electrical / Mechanical Requirements - Electricity in RDR -

40

Electricity Distribution- 66 kV High Voltage Line Along The Site (Asian Regional Plan) -

41

Service Tunnel (RDR) / Main Tunnel (SB2009)

Surface