00000001-TSA03 - NASA

Post on 04-May-2022

6 views 0 download

Transcript of 00000001-TSA03 - NASA

CR-112249

|

('lN_ P.,.,0 _mm

A STRUCTURALDESIGNFOR _ _-'_

AN EXTERNALLYBLOWN.FLAP(EBF) _ _•,bm II iWPP-b

MEDIUMSTOLRESEARCHAIRCRAFT_ mm_,_

NQ

IHI.HI9BII

BY THE u ,_Pq_

ADVANCEDTRANSPORTTECHNOLOGYENGINEERINGSTAFF o 1BNW

LTVAEROSPACECORPORATION M_,- HAMPTONTECHNICALCENTER l

_" DECEMBER29, 1972 o¢'1 lib

Preparedfor

., _TIONAL AERONAUTICSAND SPACEADIIINISTRATION _ !

.:, NASALangley ResearchCenter _| )ContractNASI-10900

al

4"

00000001

|

FOREWARD

The work describedherein was conductedby theHamptonTechnicalCenter of LTV AerospaceCorp-oration, under NASA AdvancedTransportTechnol-ogy ProjectManager, t4r.W. J. Afford,and Tech-nical Monitor, Mr. T. F. Bonner,Systems Engi-neeringDivision,NASA LangleyResearchCenter.The reportwas preparedby the AdvancedTrans-port TechnologyEngineeringStaff under the

• directionof Mr. R. R. Lynch, the HamptonTech-II nlcal Center AdvancedAircraftTechnologyManager.

I

00000001-TSA03

TABLEOF CONTENTS

Summary I

Introduction 2

Symbols 3

SectionI. Structure 6

Wing 6

HighLiftDevices 6

EnginePylon 7

GeneralArrangement 8

Section II Loads 18

Static 18

Dynamic 18

SectionIll. Stress 44

KingBox 44

Flap Loads 44

Flap Structure 45

Engine Pylon 103

SectionIV. Weights 117

I,itl_Ol_t)l)lO'PAO_I_IAikll{IblOTI_IUWI_D _"

| '"_'l=

tt !(;(

'i'

O0000001-TSA04

t

i

DRAWINGS,FIGURES,ANDTABLES

1Sectton 1. STRUCTURE

AircraftThreeVlewPD-111-2-021E.B,F,tlASTRANMODEL

WingBox - PD-III-2-O03GENERALARRAr_GEMENTWINGK'

PD-Ill-2-O06STRUCTURALARRANGEMENTWING

HighLiftDevices

KruegerFlaps- Leadingedge

PD-II1-2-O04LEADINGEDGE- OUTBOARDKRUEGERFLAP- CONCEPT

PD-111-2-005LEADINGEDGE- INBOARDKRUEGERFLAP- CONCEPT

Trailing Edge Flaps

PD-11l-2-007 %APSTRUCTURE- T. E,PD-111-2-010 T. E, FLAPSANDFLAPRONPD-111-2-Oll FLAPSTRUCTURE- T. E.

D Engine PylonPD-111-2-008 ENGINEPYLONSTRUCTURE

SectionIf, LOADS

Static

FiguresII-IthroughII-4

Dynamic

FiguresII-5throughII-16 ,_J

Tab|es II-1 through II-1'3 I

JSection III, STRESS ...

Figures III-1 through III-24

TablesIll-]through III-7 J

_ '"

Section IV, WEIGHTS

I PD-III-2-009 MASS PROPERTIESLAYOUT

Figures IV-I, IV-2

Tables IV-I through IV-g 7"

I

i

IiiV "

'i

O0000001-TSA06

SUI_ARY

IRecent studies h_ve indicated certain principle high-lift systemsthat appear attractive for application to STOLaircraft. Oneofthese is the externally blown flap (EBF) concept whereengine airis directed over the wing and flap, In the design phase, an under°standing of the dynamiccharacteristic of an externally blown flap

p'hlgh-llftwing is required. In orderto generatea morethoroughdatabase,a computerprogramto predict,by referenceto structuraldrawings,thedynamicresponseof a high-liftSTOI.wing appearsessential.

The primaryobjectiveof thisreportis to Providestructuralstiff- !ness,welqhtand loadsinformationto L.R.C. for inputintoa dynamicmodelanalysiscomputerprogram. Thisdata jis presentedin the formof sketches,weightand dynamicloadsinformationgraphsand tablesfor an externalblown,trlple-slottedflap,high-liftSTOLtransportwing.

The designof a fullcaz_tileverwing foran externalblownflap(EBF)experimentalSTOLresearchaircraftwas developedto the detailoflocatingmajorcomponuntsof the wing suchas enginelocations,leadingand trailing flap panel trim, and spoiler and aileron locations.Majorloadpointsweredeterminedandprimarystructuralloadpathsdeveloped.The functionaland structuraldesignstudiesof the majorcomponentswere investigatedto assurefeasibilityand to permit

" structuralanalysis.The structuralanalysisof the wln9 box and componentpartswas con-ductedat a preliminarydesignlevel. "Smear"analysismethodwasused to computetotal cover thickness of wing bendingmatertal andarbitraryassumptionsof a11owablestressand percenteffectivematerialwereappliedto accountfor combinedstressesand fatigueconsiderations. The flap tracks and support structure was sized atcriticalpointswiththe flap in the extendedposition.

The engine pylon fs a cantilever beamextending fcrward of the wtngand supporting the concentrated load of the eng|ne. Due to thecrittcal nature of its dynamic response, a more detailed analysisis presentedfor theenginepylon. The wlngwas analyzedfornacelle "totalweights,exclusiveof the mounts,with thenacellesbothrlgidlyand elastically mounted.

Weight, massdistribution, andmomentof inertia data is summarizedin table form and presented pictorially by drawing layout. Weight

I" data was obtained by three methods:

1. Actual knowweight of components.

2. Determined from preliminary stress sizing. __

t 3. Statistical weight esttmttng methods.

Ii

00000001-TSA07

INTRODUCTION

[NASAis engagedin a concertedeffortto providea firmtechnologyfoundationfor thedesign,development,fabrication,and operationof safe,reliable,quiet,andeconomicalfan-jetSTOLtransport.Onephase,design,Is cdncernedwith thedynamicfluttercharacteris-ticsof an externalblownflaphigh-llftwing.

In orderto generatea morethoroughdata baserequiredby designers,it is necessaryto establisha cumputerprogramto predictbyreferenceto structuraldrawings,the dynamicresponseof a STOLwing.

The primaryobjectiveof thisreportis to supplystructuralstiff-ness,weight,and loadsinformationto L. R. C. for a dynamicmodelanalysiscomputerprogram.To meetthisobjective,drawingshavebeendevelopedin sufficientdetailto permitstress,dynamicloads

: andweightinformationgraphsand tablesto be preparedfor anexternalblown,triple-slottedflap,high-11ftSTnLtransportwing.

C

,+

O0000001-TSA08

. SYMBOLS1

A Area, in2

Ae Area enclosed, in2

A1 Area lower, in2 m*

Au Area upper, tn2

B Boxwidth, in

b Wing span, feet

C.G. Center of Gravity

CnCq Section normal force, lbs/tn

CmC2q Section hinge moment, in-lbs/in

c Distancefromneutralaxis,in

E Modulusof elasticity,lbs/in 2

EI Sendingstiffness,InE-Ibs

_ F Force, lbs

FsCR Shearbucklingstress,lbs/in 2

f Stress,Ibs/In2

G Load factor or modulusof rigidity, lbs/in 2 dependingonuse

GA Shear stiffness, lbs

,_ GO Torsional stiffness, tnE-lbs ,_h Height,in

N_ hz Hertz, cycles per secondI Areamomentof inertia,In4

Izo, Massmomentof tnertta, lbs-in about respective axis_' Iyo,

I.D. Inside diameter

3

00000001-TSA09

O = V_'_ Beam-columncoefficient, inJ_

k Strouhal factor, for unsteady aerodynamics

Ks Shear buckling constant

L Length, in

M Bendtngmoment,in-lbs P_'

N Load, lbs/in

N.S. Normalstation, in

O.D. Outside d4ameter

P Load, lbs

PSI Stress, Ibs/In2

q Shearflow,lbs/tn or dynamicpressure,Ibs/in2dependingon use

R Reactionload,Ibs

S Side load, lhs

T Torque,in-lbs

Tc Enginethrust,cruise,lbs

Tm Enginethrust,max, Ibs

t Thickness,in

tl Cover thickness lower (smeared), tn

tu Cover thickness upper (smeared), in

is1 = AL/2B Thickness of lower skin, tn ,_

; tsu • Au/2B Thickness of upper skin, in _

i V Vertical shear or load, lbs - Velocity in knots tn 1DynamicLoads .!.

W Weight,lbs

w Un!fom load, lbs/in P

Distance of massfrom x reference.axis, tn ,f, J

(- Y Distance from centerlfne along wing, feet lmp_..,l_

y Deflection, tn

'_ Dtstence of mass from y reference axis. tni f,

t

O0000001-TSAIO

r

Angle of attack, degrees

_, eta Fraction of wing semi-span

xt Modal amplitude

p • I/A Radiusof gyration, in

Circular frequency, radtans/sec _'

SUBSCRIPTS

avg Average

e Effective

F Critical speed, flutter speed

ult Ultimate

tot Total

w Web

wb Wlng bendlr_g

x,y,z RectangularCorteslancoordinatesN Normal- Nacelle,in DynamicLoads

H Horizontal

V Vertlcal

MATHEMATICALCONVENIIONS,

_ _ Sum)_ Equal i i

_ Plus i• Minus

" x Mult|ply by

-V'- Square root

± Plus or minus

I(f_ t

!

I

00000001-TSA11

Section I. STRUCTURE

Thewing for the experimental STOLtransport research airplane has a17_ thickness supercrtttcal airfoil. The wtng span is 72,2 feetwith a sweepangle of 25° at the 25_ chord and a wing area of 725square feet. The wing is a full cantilever construction wtth acentersectton mountedon the upper portion of a Gulfstream el typeairframe, The wing consists of:

a. Mainbox structure

b. Leadingedgestructure(fixed)

c. Leadingedgehigh-flitflaps(Krueger)

I d. Trailingedgestructure'(fixea)

e. Trailingedgehigh-liftflaps(Trlppleslotted)

f. Spoilersystem

g. Aileronsystem

The main (structural)wingbox consistsof two sparsand an upperandlowerstringerreinforcedskin. The frontspar is locatedat 15%

( and the rearsparat 45_ of the wingchord. Primaryribsare pro-videdat structuralloadpointsas wellas intermediateribsforcontourcontroland skinpanelstabilization.Structuralloadpointlocationsare the trailingedge flaptracksand actuators,aileronhingesand actuators,leadlngedge flaphingesand actuators,andengine pylons,

The wing box is a "state-of-the-art" fabricated assemblywtth pro-: visions for attachment of leadtng and trailing edge fixed structure,

leadingand traillngedgehigh-llftdevices,spoilers,and atleronsystems. Attachmentof wing to fuselage Is provided by two machinedfuselage bulkheads: one forward and one aft of the structural wing

), box. The winggeneralarrangementis depictedby drawingPD-111-2-003and the structuralarrangementis depictedby drawingPD-III-2-006. '_

• ,, HI,h-Lift Devices i

Leading EdgeKrueger Flaps

! _ Leading edge Krueger flaps were designed to sufficient detatl in urderto determine the1, dynamicload inputs to the wing.box. These inputswill be usedas paramters In a computerflutter analysis program.

, The flap chords were described as being 25_ of the wing chord(" outboard of the engine pylons and 15_ of the wtng chord inboard and

betweenthe engine pylons. Extendedposition tS to be 60° to thewtng reference plane. Wtth these inputs, a leading edge section was

6

00000001-TSA12

drawnand the mechanic_of an articulated 25_ chord flap was designedto retract into the wing forward of the front spar (15_ chord),

( In addition, a one piece 15%chord flap was drawn,

Following a review by NASA,thts concept_.sasdetailed on drawingsPD-111-2-004 andPD-111-2-O05, Actuators and hinge points, as wellas spanwlse trtm lines, were determined utilizing the prevfouslyestablished wing box ribs as hard points where possible. Thls infor-mation is depicted on planform general arrangement drawing PD-I11-2-003. P"

Trailing EdgeFlaps

The tratltng edge flap systemconsists of an inboard flap, center flap,and outboard flap. Eachflap is madeup of three (3) elements and isa triple-slot modtfied Fowler type. The first and secondelementsare the St. Cyr aerodynamicproftle and the third element is aNACA4412 profile modified to match the supercrfttcal wing tratltng

; edge. The chords of the three (3) elemeo_sar? 10%C,2p%Can_. .22.5_C, r_sp@_fy¢_y. The trailing eege TJap structure _s Depicted onDrawingsPD-///-uu/ and ru-/l:-_-Oll.Data suppliedby NASAdictatedflapelementdeflectionsfor a landingpositionsettingand a take-offpositionsettingwith the three(3)slotsheldconstantat .015C(seedrawingNo. PO-ll1-2-OlO,flaptrackstation84.90take-offposition,andflaptrackstation84.g0landingposition).The thirdelementrotates+ 20° as flapronwhen positionedto the landingsetting.The .Ol5Cslo_remainsconstantthroughoutthe_ 20a flapronrotation.

( The flapstranslatebetweenretractedand take-offpositionswitha conventionalFowlertypemotion. However,betweenlandingpositionand take-offposition,all flapelementsrotateabouta commonfixedpoint(seedrawingNo. PD-lll-2-OlO,notesI through4).

EnginePylon

Supportof the TF-34enginesIs providedby enginepylonscantileveredforwardof the structuralwing box and attachedto the frontspar.

_ The pylon consists of:

I a. Forward engine/pylon mount fitting

b. Pylon box _tructure K,,

c, Rear engtne/wlon mountfittlng !

d. Upper and lower splice fittings (pylon to wing box) _i;1

Drawing PD-111-2-OO8deptcts the structural arrangement of the closed "'box wlon.

The forwardengine/pylon mountconsists of a machinedforgedfitting ._,_attachedto the box structure.A thermalexpansionllnkIs provided

(- between this fitting and a spherical bearing support on the engine. ,_.,_The rear engine/pylon mountts also s machinedforged fitting. An

7

1

00000001-TSA13

integral machinedpin engagesthe engine mountfor thrust and sideloads and two stabilizing links resist rotation about the longitudinalaxis.

Structural attachment to the wind box is provided by two upper andtwo lower spltce fittings. Uppersplice fittings are bathtub typewith tension bolts, Lower splice fittings transfer load throughshear into the lower wing skin.

General Arrangementa

A three view of the NASAEBF model is depicted on drawingPD-111-2-021.

(,

00000001-TSA14

.................. .. _,_

YOLDOUT

r: t

......-_, T:_i_,_--_--__-_ .... , ,

SPAN b FT 722 322 22

"A_'AT_ ................................7.2 40 i.G*.

SWEEP ._ _:Lc 25" 1TAPER RATIO _ .4 .4 .TS | ""-_

-=_--:_ .... _.s a._ .,o_u'_-_o_¥V t.2T .,sI

_=

ENGINE' TF 34RATED THRUST, LBS. t,lO0NOMiNAl.GROSSWEIGHT_ LBS. 50,000RANGEOF GRC$S WEIGHTS_ LES. 43,500 TO 72,EC0NOMINAL '6"INGLOADING, LB/FT a 60JlANGEOF WINS LOADINGS. LB/FT I 60 TO tOO

I

00000001-TSB01

FOLDOUTF_^g_

_l|,O* r

-- t - e I i i i

O0000001-TSB02

t j

r

q

4

00000001-TSB08

I

00000001-TSB09

00000001-TSB10

i

00000001-TSB11

mr,6 i_lb

mP

A I)tS_Nl¢| S'R_ItrR_ |f_ O_TM

, //I

ah.i|i *II. h_J -- )

O0000001-TSB12

O0000001-'TSB13

O0000001-TSB14

t

\= !

..............................................................................................._-

i \ I

5.__.F:g'E_ _.......rG.-_____ Z'-w lue°Ir'JS_"i'A"t" _"_

00000001-TSC04

O0000001-TSCO

, i

.... (:/,, ..: .......

I

%/

00000001-TSC06

........._-_'_ _ 'i_ i"I - i t .--- v,_" _" _"" ';"":''_" -'_" _.i-: '_.... " I_ f/_-, -- _" */

!l! ._ \ ,t .l. , . ,i . o J¥l\ _ ,1_ }] _ : I _ I t t t I I i _" i a O"

'" ...... i "..i_._-J , II i_ ...... r J_.-' -_

• i" :'"":':_ "" "'_:_"{_/ _

• ; i , _ _e','_ i_Ahll[:i.

,\,,/ ! f .........•._.....B-B.

'"•,._• 'I,o SS__ __u....... (__'_G.

I

00000001-TSC08

|

00000001-TSC10

00000001-TSCl 1

(f .... _. ._..,._,_-_¢- ._..:

"; I. • I srol i

_._ t._ 1_. I_I.1-111 • - ._" -"

O000000]-TSC]2

i

I; I

;INE

| '_'i

2

.i

/5

' 1

00000001-TSD02

\

It n

00000001-TSD03

i

00000001-

/ ' FLAP LAlilih'.,:E

/

• ".c_+,_.D-D' _ • _72 $CA.£

I

.;.EE

|

,J

: I

I

I //

i

00000001-TSD11

kA

00000001-TSD12

/ ,/ D

Section 1I. LOADS

Stati.___c

Cruise Configuration: The wingspanwtse load distribution wasassumedto be represented by an elliptical distribution. Thespanwtseload distribution was then integrated from the tip inboardto provide the local shear and bending momentat any given spanwtse /p,,station. The engines, nacelles and pylons were treated as concen-trated loads. This information ts represented by Figure II-1 andFigure I]-2.

High Lift Configuration: The loads acting on the high 1tit deviceswere established from empirical sources at the 180 knot flightcondition without blowing. In the absenceof more definitive data,the spanwlsedistributionof sectionnormalforceand hingemomentwere assumedto varywithchordlength. This informationis repre-sentedby FigureII-3and FigureII-4.

The loadswiththe externallyblownflapwere investigatedat a lowspeedflightconditionfor whichthereis limitedexperimentaldata.The resultsshowedthatlocalpressureson the thirdflapelementwereslightlyhigherwithblowingthanwerepredictedfor the highspeedflightcondition.However,totalloadswere higherforallelementsin the highspeedflightcondition.

Usingthewing geometricaldatagivenon FiguresIII-2and Ill-3,and the stiffnessdatagivenon FiguresIiI-l,III-4,Ill-19,III-20and Ill-21,and the inertialdatashownin SectionIV,a finiteelementanalysisof the wingwas synthesized.Thismodelwas usedto obtain,first,the naturalmodesof vibrationand,ultimately,the fluttercharacteristics.

Thewingwas analyzedfor nacelletotalweights,exclusiveof themounts, of 2015 and 3500 pounds, wtth the nacelles both rigtdly and

BIK elasticallyattachedto the wing;it was alsoanalyzedwithoutany

nacelles.All resultsare forthe wingcantileveredfromthe fuselageside.

Vibrationnaturalfrequenciesare presentedinTablesII-1to II-5. bTheseare for the emptywing (contains only residual fuel). Not allthe vibrationfrequenciesusedin the flutteranalyslsare given

"_ sincethematerialwouldbe voluminousand probablynot be of primaryinterest.

• Presentedin Table II-4are wingbendingnaturalfrequencies for thewtng with nacelles elastically attached. The frequencies were obtainedfrom an eight degree-of-freedom, lumpedparameter analysis. There aresix degrees-of-freedom for the wing and one degree-of-freedom for eachnacelle. Modeshapes, along the wing elasttc axis, that correspond

{ to these frequencies, ere shownin Figures II-5 to 11-12. _._

._ ....... . . |t

O0000001'TSE01

Coupled bending and torsion natural frequencies, for the wtng withnacelles elastically attached, are presented tn Table II-5. Six con-trol points located on the wing elastic axis with two degrees-of-freedom, one in bending and one in torsion, at each control point,were used In a dynamically coupled analysis. Again, one bendingdegree-of-freedom was used for each nacelle.

Results of a flutter study are presented in Tab;es II-6 to If-13 andtn Figures If-13 and II-14. In the tables, k is the Strouhalfactor and _F is the flutter frequency. All flutter speeds are com-puted in teHns of true airspeeds.

The flutter analysis used:

(1) Subsonic, two dimensional, incompressible, Theodorsentheoretical aerodynamics using strip theory acrossthe wing span

: (2) The dynamics of elastically suspendednacelles, withno aerodynamics on the nacelles.

Figures 11-13 and 11-14 shov_the flutter boundaries for the wing with

( elastically _ounted nacelles. Flutter speeds are plotted versus theratio of nacelle fundamental bending frequency to the uncoupledfundamental bending frequency of the empty wing. The points at thenacelle-to-wing bending frequency ratio of infinity, representinga rigid mounting, are points that were determined in the study.However, the dotted line represents a Judgment between its two endpoints.

These flutter results should be compared to those obtained by differentanalyses and methods; they should also be corroborated or substantiatedby tests of wind tunnel dynamic models. If aerodynamic parametersfrom wind tunnel tests are available, tt is recommendedthat theybe used in the sameprogram used for this study.

(

19

O0000001-TSE02

00000001-TSE06

" _ Ftgure 11-5.Hatural bend4ngmodeshapealongw|ng elastt¢ ax4s.STOLwtng (empty). . • 18.49 rad/sec. "Q

24

00000001-TSE07

• .', , ,

E i _ !,. _- .'. ,• "' j,! __'r ,

I

Ii " :1 /

i - .• .] •

! 1

,i ; /

_ ' •

• •, //i

/I J

/ ii

I

_ n ,i _

r, J !

(_ Ft§ure II-6 Natural bend|ngmodeshapealong wtng elastt¢ axts. '• STOLw_ng(empty). . • 35.68 tad/see. ' "_*'_

_S

'!

A'__.a_,_...... P'• ,-_- "_ __ 'b I_1p v;_ • "_?V.:'I v's_ • .& ,_i/j_ 'm_'l 'l,-_t,.,! i° •, i_ I.'o b','d 9_ , t,,

; 0 .

• Jl;

¢

1

, /

i , .

q / **1

Naturalbendlngmodeshapealongwlngelastlc axls,

Ftgure 1I-7 STOLwlng (empty) t_ • 58.73 radlsec,' t _i

26 ,

i ,

O0000OO'l:T._-_n4

, I

Z' I I _ ,

• i ! /

; i , I [

/• 1

I

f

(- _i

i

_4 I:

I ,,_ , --._... " J____.. ,

t

t , t_"B. : I . .

Figure II-8 Natural bendtnginodeshapealan9 wing elastic axtl.,_ STOLwing (empty). , - 104.9 rad/se¢, i

f. 27 IiI ............ -- --4

00000001-TSElO

I I

i I ' i ,II,,, :

/t 1t i

,:[ ..... /n n_n

._- / i--"i "_-'_'_ _ J

jj.. L ,

o

I

2 _ ' L I ._ ,' " " " ': Is''. .a.:z _..i.2J,,• ' _i ": %11 _II

t'Flgure II-9 Hatural bend|rig mode shape along wing elastic axis:

" ( STOLwing (empty). , - 21C.6rad/sec. [,28

to

00000001-TSE11

l/

/t

_1,- /

tt, i ' -

i

II*

*_ n n

I'l 'i !1,"! lt,*l.$t, "i. ,it 'il

" ir Figure II-10 lt_tural bendtngr.odeshapealong wing elastic axis.SiOL wing (ellillty). iI - 434.0 tad/see,

It

O0000001-TSE12

_d_GI

, I J _'

Ij i Ii

i II J, i

i

.! LI• j f

t.r,

I

'!'S!"Z 't.:t,$'_. ' _Ftaure ZI-11 Natural bendtngmodeshapealong w|ng elasttc axts.

0 STOLwtng (empty). _ = 513.1 red/sec. _.r,,:_

I

30

00000001-TSE13

#

L _ .:I

• l ' : ,! i _i il _l $1 "| !; 4& _,';

" (_ Ftgure II-12 Natural bendtngmodeshapealongwtngelast|c axts.STOLwtng (empty). w - 1163 radlsec. '

(31

O0000001-TSE14

1

Table II-1 UncoupledNatural Frequencies -Winowith No Engines

Mode _ Torsionrad/sec hz rad/sec hz

1 24.73 3.93 55.55 8.84 P"

2 85,42 13.59 105.2 16,74

3 204.5 32.5 145,4 23.1

4 425.6 67.7 165.4 26.3

Table11-2 UncoupledNaturalFrequencies-Wingwith 2015lb. Nacelles,AttachedRigidly

Mod_.e. Bend_end!nK1n Torsio_____En

rad/sec hz rad/sec hz

1 22.77 3.62 21.63 3.44'

2 63.29 10.07 51.41 8.18

3 170.3 27.1 83.82 13.34

4 284.8 45.3 157,6 25.1

Table II-3 UncoupledNaturAl Frequencies - "

_ Wingwith 3500 lb. Nacelles, i41_ AttAched Rigidly

,i _ e___.nq Totsto...___.nn "

J rad/sec hz rAd/sec hz

1 21.57 3.43 17.14 2.73 ( ._

C 2 56.g6 9.06 40.96 6.52 "_"_3 163,3 26,0 83.0 13.21

4 244.3 38.9 157,5 25.1

f

: 34

O0000001-rg 3'

TableII-4 BendingNaturalFreq,encies- Wingwith2015 Ib. Nacelles,ElastlcallyAttached

Mod_...Ee _ hz

1 18.49 2.942 35.68 5.683 58.73 9,35 7'4 104.9 16.695 218.6 34.86 434.0 69.17 513.1 81.7 ;8 1163.3 185.1

TableII-5 CoupledNaturalFrequencies- Win9with2015 Ib, Nacelles, Elastically Attached

Hode _ hz

I 17.31 2.752 22.50 3.583 41.31 6, 574 44.65 7.115 79.38 12,636 97.23 15.477 129.8 20.78 200.2 31.99 261.2 41.6

I0 381.7 60.711 479.4 76.312 517.6 82.413 832.4 132.514 1969.0 313.4 "

"

NNNNNNnt T_=nA

TableII-6 STOLWing FlutterSpeeds- With2015 lb. Nacelles,Elastically Hauntedon the Wing, Pylon stiffnessReducedto 25%of DesignValue,

Altitude Fuel k UF ' VF

.ft. . L rad/sec . ft/spc . knpts. W"

0 empty ,25 35,5 613 363

10000 / ,23 35.3 662 39220000 ,20 35,2 759 44925000 ,19 35,1 795 47130000 empty ,17 35,1 891 528

0 25_ ,27 34,8 556 32910000 ,24 34.7 624 36920000 ,21 34,6 711 42125000 ,lg 34,6 785 46530000 25% ,18 34,6 828 490

0 50% ,28 34,4 52g 31310000 ,25 34,3 592 35120000 ,22 34,3 671 397

. 25000 ,20 34,2 737 43630000 50% ,18 34,2 818 484

L

0 75% ,28 34,0 524 310

10000 ) ,25 34,0 587 34820000 ,21 33,9 697 41325000 .19 33.9 769 45530000 75% ,18 33,9 812 481

0 100% ,25 33,8 582 34510000 J • 22 33,8 861 391

20000 O_ •18 33, 7 807 478 t!_

25000 ,17 33,7 855 506 . '30000 1 % .15 33.7 967 573

i,• i

_W! ,

P

36 .'i

O0000001-TSF05

t Table II-7 STOLHtng Flutter Speeds- With 3500 lb, Nacelles,E1astlcallyf4ountedon the Wing. PylonstiffnessReducedto 25% of DesignValue.

Altttude Fuel k =F VF

ft _. rad/sec ft/sec . knots P

0 empty .21 28.4 582 345

10000 / .19 28.1 638 37820000 _16 28.2 760 45025000 ,15 28.1 809 47930000 empty .14 28.1 864 512

0 25% .22 27.9 546 323

: 10000 / .19 27.8 631 374, 20000 .17 27.7 702 416• 25000 .16 27.6 743 440

30000 25_ .15 27.5 791 468

0 5P$ .23 27.5 515 305

10000 J ,20 27.4 591 35020000 ,18 27.3 653 387

( " 25000 .16 27.3 736 43630000 5_% .15 27.3 784 464

0 754 .23 27.2 509 30110000 ,21 27.1 557 33020000 ,18 27.1 648 38425000 ._7 27.0 585 40530000 75X .lb 27,0 777 460

I : 0 100_ .2_ 27.0 484 28710000 .21 26.9 552 327

20000 oJ0 .18 26.8 643 381 '!

25000 .17 26.8 681 40330000 1 % .16 26.8 723 428

q .

1

37 ,i i

Table II-8 STOLt#tng Flutter Speeds- With 2015 lb. Nacelles,Elastically Hountedon the _#ing. Pylon stiffnessReducedto 50%of Design Value.

Altttude Fuel k uF VF

ft rad/sec ft/sec knots

emty .33 41.0 535 3170 Lp 588 348

10000 !p .30 41.0

20000 .26 40.9 679 40225000 .25 40.9 706 41830000 e ty .23 40.9 767 454

25% .34 40.6 514 3040 34510000 | .30 40.5 58220000 .26 40.5 672 398

25000 _5 .24 40.5 727 43030000 % .22 40.5 793 470

0 5p% .26 40.0 663 393

10000 / .23 40.0 749 44320000 .Ib 30.8 887 52525000 .14 30.9 952 56430000 50% .12 29.4 1056 625

0 75% .18 29.5 481 41810000 _ .16 29.4 540" 469

20000 I .13 28.0 635 55225000 .12 27.9 683 59330000 75% .11 27.6 738 641

0 100% .18 29.4 703 416I_ 10000 .15 28.4 816 483

20000 .13 28.2 936 55425000 .12 28.1 1010 598

, 30000 100% ,;11 27.9 1094 648

)

J

00000001-TSF07

|' TableII-9 STOLHlng FlutterSpeeds- _iith3500 lb. Nacelles,. ElasticallyMountedon the VIing.PylonstiffnessReducedto 50_ of DesignValue.

VFAltitude Fuel k F

ft red sec ft sec knots578 342

0 empty .24 32.2 631 37410000 J .22 32.2

20000 !p ,19 32.2 730 43225000 .18 32.2 770 45630000 e ty .17 32.2 815 483

0 25% .29 32.0 476 282

10000 I .26 32.0 531 31420000 .23 32.0 600 355

• 25000 ,22 32.0 627690 40937130000 _'25% .20 32.0

0 50% .33 31.8 416 24510000 | .29 31.8 473 280

( 20000 !0 ,26 31.8 527 31225000 .24 31.8 571 33830000 % .22 31.8 623 369

0 75% .30 31.6 310 269

10000 I .27 31.6 344 29920000 .23 31.6 404 35125000 .21 31.6 442488 424384

L _ 30000 75% .19 31.6i 0 100% .21 31_3 438 381 ,_

i 10000 I .19 3i.3 484 42020000 .16 31.3 575 499

I 25000 ,14 31.2 656 57030000 100% .13 31.2 706 613

"i(I 39} ',

I

00000001-TSF08

Table II-10STOLWing FlutterSpeeds- With 2015lb. Nacelles,ElasticallyHountedon the Wit . PylonstiffnessReducedto 75) of DesignValue.

Altitude Fuel k _F VF

rad/sec ft/sec knots ,ft

0 empty .35 43.7 538 319lOO00 .32 43.7 588 34820000 / .29 43.7 649 38425000 .27 43.7 697 41330000 eJpty .25 43.6 752 445

0 2)% .30 43,1 619 367: lOOO0 .27 43.0 687 407

20000 / ,23 43.0 806 47725000 .22 43.0 843 49930000 25% .20 43.0 926 548

0 riO% .20 32.2 695 412lOOOO t .17 31,5 797 47220000 .15 31.5 905 53625000 I .13 30.1 998 59130000 50% .12 29.9 1073 635

0 75% .18 30.3 724 42910000 _ .15 30.3 815 483

20000 I .13 28.9 958 56725000 .12 28.7 1031 61030000 75% .11 28.4 1115 660

, 0 100% .18 29.9 716 42410000 _ .15 28.9 831 492

20000 [ .13 28.8 954 56525000 .12 28.7 1030 61030000 100% .10 26,8 1155 684

qk,.

!4

4O

00000001-TSF09

Table ]I-11STOL _tng Flutter Speeds- _tth 3500 lb. Nacelles,_ Elastically Mountedon the Wtng. Pylon _tiffness

Reducedto 75_ of Design Value.

A1tltude Fuel k _F VF

ft red/see f,t/sec knots _'i

0 emery .25 34.3 592 351

10000 ! .23 34.3 543 381

20000 .21 34.3 705 41725000 .20 34.3 740 43830000 emty .19 34.3 779 461

0 25_ .33 34.1 445 26310000 | .31 34.1 474 281

20000 k .28 34.1 525 31125000 .26 34.1 566 33530000 2 % .24 34.1 612 362

0 50% .17 33.8 470 27810000 I .15 33.8 521 308

20000 I ,13 33.8 583 345( 25000 .12 33.8 634 37530000 50% .11 33.8 594 411

0 75% .17 26.2 664 393'

10000 / .15 26.0 747 44220000 •13 25.8 854 50625000 •12 25.6 920 545

, 30000 75% • 11 25.4 995 589I '(

I_ _ 0 100% .17 25.8 654 387

10000 / .14 24.9 766 454 _20000 _ •12 24.5 880 52125000 .11 24.3 951 56330000 1% .10 24.0 1033 612 !

! t-

", (-

41

I IISII II I| I L 1_ ..... I .... 1_ III I00000001-TSF10

TableII-12 STOLWing FlutterSpeeds- With 2015 lb.Nacelles,ElasticallyMountedon the Wing.

Altitude Fuel k _F VF

ft rad/sec ft/sec knots.... p"

0 empty .34 45.1 572 33910000 l .32 45.1 608 36020000 .28 45.1 694 411

25000 !p .27 45.1 720 42630000 e ty .25 45.1 778 461

0 25% .28 44,3 683 40410000 J .25 44.3 764 45220000 ,22 44.3 868 514

25000 2_ .20 44.3 954 565_ 30000 % .18 44.3 1058 626

0 50% .20 32.6 479 41610000 I .17 31,7 549 47720000 .14 30.5 642 55725000 J .13 30.4 687 59630000 50% , ]2 30,1 738 641

0 7_% • 18 30.5 731 433

I0000 _ • 16 30.6 823 48720000 .13 29.2 967 57325000 •12 29.0 1041 61630000 75% .11 28.7 1126 667

0 IOOZ . 17 42.0 752 445I0000 JO .15 29.6 849 503

20000 • 13 29.4 976 57825000 •11 27.6 1084 64230000 I % • I0 27.3 1176 696

42

00000001-TSF11

Table II-13 STOL_lin9 Flutter Speeds- Q/fth 3600 lb. Nacelles,Elastically tlounted on the W_n9.

Altttude Fuel k _F VF

ft rad/soc, ft/sec knots

0 empty .25 35.5 612 362

10000 / .24 35.5 638 37820000 ,23 35.5 666 39425000 .22 35.5 696 41230000 empty °20 35.5 766 454

0 259 .34 35.3 447 26510000 | .32 35.3 475 281

20000 1 °29 35.3 524 31025000 ,27 35.2 563 33330000 2 _ .25 35.2 608 360

0 5_; .27 34.9 557 330

10000 / .24 34.9 626 37120000 .22 34.9 683 40425000 ,20 34.8 751 44530000 50_ .18 34.8 834 494

,m

0 75_ .17 26,4 670 39710000 I ,15 26.3 754 446

20000 J .13 26.1 864 51225000 .11 25.1 984 58330000 75_ .I0 24.9 1074 538

0 100_ .16 25.4 684 405' 10000 / .14 25.1 773 458

20000 JO .12 24.7 889 52625000 .11 _4,5 959 56830000 1 Z .10 24.2 1042 617

43 i

-- A _ |

O0000001-TSF12

I

Section Ill, STRESS

This sectton contains the preliminary analyses of the wing box, flapsand engine pylon structure. Included are the stlffnesses and approx-imate section properties required for the vibration and flutter analyses.

; ' / The wing box analysis begins on page 44. Bendtn_, torsional and vertJ-: ca1 shear sttffnesses are on pages46 and 49. An tnternal bending

load distribution in the box covers is on page 50.

The flap analysis begins on page 44. Pages58 and 59 summarizetheflap bendingand torsional st_ffnesses. Analysis and section propertiesof the flapsupportstructureareprovidedon pages73 throughI00.The figure on page 100 identifies the typical sections for the inboard,center andoutboard flap supports.

The pylon analysis begins on page 103. Vertical shear stiffness, bendingstiffness and torsional stiffness are plotted versus pylon length onpages 106, 107, and 108, respectively.

The wing box is a single cell box beamof skin-stringer construction.Hatertal is aluminumalloy (2024-T3 and 7075-T6). Methodof analysisis at a preliminary design level assumingan allowable bendingtensilestress in the lower surface of 50,000 psi. Upper surface wing bendingarea is basedon the lowersurfaceareaarbitrarilyincreased20% toaccountfur a nm_ally higherareadue to the uppersurfacebeingbucklingcritical.The allowablestressof 50,000psi accountsforareaout due to holes,combiningbendingstresseswith shearstressesand fatigueconsiderations.

Resultantbendingmaterialdeterminedthe bendingstiffness. Thevertical shear stiffness is based on the total estimated spar webthicknesses. Torsional stiffness is based on the spar web thicknessesand the upperand lowerskinthicknesses.Skinthicknessesweredeterminedby assuming50%of the bendingmaterialto be shearmaterla1.

Flap Loads

!_ The normalforce(FN) and pitchingmomentson flapnumbersl, 2, and- 3 for inboard,centerandoutboardsectionswere determinedfromthe

coefficients shownon pages 101 and 102. These forces and momentsare,. reacted at the flap supports. Bendingmomentson the flaps are used

_ to determine the sktn gages. The bending and torsional rigidity-,_ curves for the flaps are shownon pages58 and 59, respectively. The

: calculations for the forces and momentsare shownon pages 61 through

_. _ 72, and are summarizedon page60.

The reactive loads andmomentsare applied to the flap support beamsand tracks to determine the size of the cross sections. Bearing

, sizes capable of carrying the required loads |nfluence the initialsizing of the members. Thebearing loads applied to the flanges ofthe beamsand tracks are critical. The shapeend sizes of several

44Pi _

- A

O0000001-TSF13

crttlcal cross sections are shownfor each section of the flaps.In all cases the dimensions, cross sectional areas, momentsofInertia of the beamsand tracks are varytng. In the absenceofdetailed drawings, it should be suff|ciently accurate to consider1tnear variation of properties from sectton to section.

Flap S_ructure

Thematerial of construction for the skin and frames of the flapsis 17-7 PH stainless steel. The skins are brazed to a stainlesssteel honeycombcore. The tracks, supports, and fittings are madefrom 17-4 PIt staJnluss steel. The mechanical properties for thesematerials are referenced in HIL-HDBK-5,and they are reproducedforconveniencebelow.

17-7 PHstainless steel*

HIL-S-25043

Sheet

Ftu = 177 KSZ

Fry = 150 KSI

Fry = 158 KSI

Fsu :_ 1:3I

E = 29.0 x 106 PSI

Ee = 30.0 x 106 PSI

17-4 PHStainless Steel*

AHS5643

_,_ Bar end Forgingm,,.. Ftu = 190 KSI

_. Fry = 170 KSI

Fcy = 178 KSI

_ FSU• 123 K_!

E _ 29.0 x 106 PSI

Ec • 30.0 x 106 PSI• (

• Roomtemperature values

i 46

O0000001-TSF14

$

o

w"

4g

0000000]-TSG04

i

00000001-TSG05

k

00000001-TSG06

I

,_ 52 , "'

00000001-TSG07

\!,

(

53

............... AL--..... • ,, • , -- --

00000001-TSG08

• S4

00000001-TSG09

I

00000001-TSG10

....... _ • _ .....

q ' l

I_"

_r _ i _ _tt

_ _ _ _ r_ _ _"

_'__£71 "- _',_S _v//v_

O0000001-TSG11

I

u,I_.,,o

-4

tJ

t--

0

"0

... _1 k

// :h _-

Q

•"_, "p__-r_,_Z_l_ _ _v7..

£a

0000000]-TSG]4

w _ _ = 1

I

$ ..t'!, *o% # _t. _

i'_(_"_ , J,1,.,_,_._,_ ",' .,,..

..:?.7r_ ['.#D. '_ '_ ' rju)'_ D, .r.NL3,gI, RD)OUTI3 i)

,Lz,WZW I L.I'/,a.FT

',','.':'O/?,:_,.b I ,..t,_Z./., I 2jz_"tyj "17/0._ - / :,z7,f:J+",- _077 ',¢"._"_ 8 -,' o "7 - 2 d,._ z/.._

I Z'¢ 2-_b- 7_12M -l_2a_ -10907I

'.......... /2 ?....J ,.- i _- OZ.- ?.._r.f./,., /,. ,, I 3q 1'7 -1075"0 - ct3_oI! 2 2qqo .316q "-]9,0_ ,-16_7_,-i _ I 1_TZ 1_..°,0 -. 2o9s - 717o

Ou /679 I_'a,O - dazgB -_'ZZl.C6121_ "2-Ol9 -109_ -.91._,-

IOOq ef_a _9,Bq, ..... ,.._.-q 67 ¢0 -

i.;OTt_ : " e " " _,_t',B,,,-,c-D -¢ OUTSOA,°,_O /.,0#._,,._ ,:e-t--PZ.% "FO _O_D$ ,qT

,2_'CPOStT.rv£ Lo,cDS A5 SHOVq_

! ,NI:: X/,14.t_I. FO P.C.::'_ /ett,l :O /Vl Ol_d/._.l',l'l'_ AT ,,_',9¢H ,._UP,_O,:,I,T Y/_%_N 1

I.:;".,_,'_ (,_7.4": _G,;;.O .-"¢_CT".rt;r; ) OV_',e /-/n.'-F O, ._ T,";_" F/.,_L ._/6 "rm,

t

TABLEIII-6 STOL - TRAILINGEDGEFLAPLOADS

60 '_

I

_L, -.

00000002

:'...4 P ,VO. /

,'i?,'C_LE 0;-" .:_W_.._F; I9°=-::;COS.A. = ,74z'_6_3

" AI_EA = 12 _'7. Z_I,_ RIq,"/T tt,_#tD RtJ/..-_

9o

I .'Jg. I Z = I1.,_". ? _ ----= ?,._t. ;_ "_/ = 67, Z?,cl_o_8 .+,/oc, 8 .9+oa&

++ l.-_j_ ,_7,q_ .'_ _ /.._,/.t.,V, = 3"_%Z_, 2...8. (LI/'A]T) .I'NI_OARD ,SUP,'_O_,,T '.

M "= ._7, c18;_-,_., 6"- - iz/_ 78"7 I,,V-.L_. (/-,]'/,'Y2"I_ Ot.J'T_'D ._UP,eoR7 "

STOL - TRAILINGEDGE

INBOARDFLAP [

- (-i ,t!

61 t ._!t

00000002-TSA03

/,,_',,_,L- C3F :SV'I£'_'P /9 nC o S ..A_ = o '20'5_'Z

._T,.",, Iq'8._o .-._T.,:. B ����....... r"--'_ F'N 31, "_.

' Ial

i _2_• . .... --'-'-/ Rf_HT /-IAND NULl"

l---0":,2"_.9o "'I - "L-"_3"_°'-" - .... ":'"

{

109,1"Z _ 115..5t0 _2,_o _3,3o.......... = _._'_. -_ : _,&. 7#-

-_--_'---E¢-= _-7,70

i _O,I,,_X ,._,q,.5"5 : I_.Y,S. ,._Q..tN,

8S LB.IZN. = _o77. Z_, (ZI,_,',.') ZNp_'_, _u,"_o_ L,-..,.= _,,,7o X/_l: ._7,7o X -.ff.,?..._ = -30.,_9_ 2"AI'z_,(Z.II4IT).UNB D._',JP,_ORT/'..¢,= _'7._o-- ,x - htOo - -_,gq__ .l'kl-4,_. (L.ttd.rT) ou'cB'D-'St-lPr°O_.7"

STOL- TRAILING EDGEINBOARD FLAP

i

'l

00000002-TSA04

.---qSO/-----_._= 11"!.8_ ,-_¢01-'----_ = _'_.,1# ,q_OlS" "-

f,

/_'I "=. _'7,_1 _ -_0 .--. --/_t_.O_ 2"N-L_:'_, (A..t't4/7=)Z'PI,_'O .._UPPd,RT '_i

h,/= .._7,,FI ._ -!_0 = - ID,,qo7 Z,_/-L&, (L,rh't!7) 13U7",_'_) 3U;_pO..?T

.

*' STOL- TRATLHIGEDGE ,1

/

It{BOAROFLAP

6S i'"i

- " _ i ii__-i\i_ i__/_ _i- i - ii _ _-_ _00000002-TSA05

° ,

FLA P NO, 2

% i te

<2,5;,J 7--.-,-?

STOL - TRAILIIIGEDGECENTER FLAP

i,

,I4

I

00000002-TSA07

87, o,_ /_3, ._'_. /%._ _/. o

"t,: = 71,0 x et'3,.Ol_ .-- #$$0q .t..._. (,L,£/,'IZT) 7oT,,_.t..

F,_ - _/ 6 _ A_, (Lz/,,t.r'r) OuTa'D.

) "_I /.-,.,.,--lq_,_._,t_t-,LO (Z Z/'.,'/J'7" JW,9 "D. k

: ,__= -/_ a-/_ za-aa ('zz,,'e,,7) our '.o. !!i,

STOL- TRAILINGEDGE

CENTERFLAP ,_

i

.k

¢I

. ¢

O000000?-T.qA_R

Ib!

_T,_. 2_/_3._ 57"/I,I IS9._oI

14

_ [REGal-IT H,_.t,'D RUI-.:E.

--'.-;._oI'-'-'--'_ ,9_'_'.;/5 ,q':_o/_ = _"_' :,7Dt

b':; "_ /5"72. !B. (LI,_,/Z= r) Z;'/_'D. Fr: = /_l_,o. _,_. (LI://yT)_u:_',_')u,m

"t_ = _. x _/2,52 = No SN I._.(L//.IJT) ToT_Z

v :,:.=-__oee.z,:-,-_.(a_:4.,7>'r,_'o.•. ?: 7170, .tN-L_, (L:P4Y/) OUTD'D. ,_

l,"_ ' STOL - TRAILING ';DGE,,, CENTER FLAP ,_

67 _

00000002-TSA09

, ...... r::.,._ '._• ..'_'_'Jh,','='. l_q"),',,'ld"£/'l':/._:'._'/',o.._,_!.,i',:.i'.:?,,.l

FL'AP No, 3 _.

t;"STOL- TRAILINGEDGE

t CENTERFLAP

i

i

00000002-TSA10

':_U T_T/_4

l,

(

•_S:s5 /9.7_.. 98._S ;,_,_,--_;..._8_= (_'.7,98 ......,9_,'o_3 = IL+'_'8 .:/_'0_._= :u,.=u

,-_N= _&x &'_.?3 = 3ZI_2L_. (LZt/ItT) TaT/i,-

iN A

Jt'l

= I_,o '-'_.(L£M;T) OUT_'_.6v

_'_k_I STOL- TRAILINGEDGE

OUTERFLAP _i

_9

" 00000002-TSA11

:.,:.,'J,_10, "' . ....

,,. C_tJT,:='"r_

70

00000002-TSA12

¢¢

5TA. 2. 7Z, _0

bTA. ..:311,13 I_I

I

(-

_,_, 8_._ .= _9,_,3 /Z,..___j7___ =. IV, V_ " ,'.?.,_'otR

r_,.,= /Ooq L,e, (Lz_',_z'/') Ze/,,_'D,;-_/ = q"_ ].B. (LIMIT) ¢OOTFJ'D.h_ = _. _ Gg, Z_ "= 1_39 LB. _L/h'llT) 7"97"/q:.

..:, :,,,,"..--_,_8_ rN-z_. (z./,_r)our_'D.

STOL- TRAILIN_EDGE I

._, OUTERFLAP _,._"

_',

" C.

71 __

i

00000002-TSA13

,STY. _11.18 _T,_, 27_. 8¢_

STOL- TRAILI_IGEDGEOUTERFLAP ! )

( !BIP"r",,_

72

I

O0000002-TSA14

, "" ',D " !.• ... _ , _ :, i • ,"_ t._

-. :.: .:,Z_..... L:;, ,-'-,.,_,::_H._. 73 .. I_, "_.o_' Zt;-L,._.__' _,'.r_._:7)

,"¢ #, i*.j , 7'j..,., -' ':, J..,_, :-"L .,';',_ /_1_ • " -" / l 0 "; I N - L '"

,:',:,,_,i:):,_-/,'Io/'.._N'TSrq_oUT W/l:. PZ',/_7" p,s.r/vw _r: p.,

--I, 0 ;< _ {::0.5 _.3 _ --._.0 x 2B_5.SZN_ _-l$,OX .6o77 _Zk/ _12 _- I.G :_ :_B_(, _..r/,l_:_o

STOL - TRAILIIIG EDGE _""_£ THBOARDFLA_ '- ;

,!

14 I

O0000002-TSB02

t . , J J * t l s" _ t'. J j,'_ jo WI

I

• i ,2,O, _ ,.', _ ,'"JL ,-..:_ ::_,

Re -- - ,_B ? .2.,I__l '=_;'z .= 52 "" Z ,3 & L ,_,.

..'1 t_

._.1_,, 1"

lSTOL- TRAILINGEDGE

_; INBOgRDFL/_P _I

" ( "-"_

O0000002-TSB04

H'_.,5o 0

J= =., --_.,.'.F23)T_ = /_

L - _7.7 /_ = 2,_1

--- .-. :7--.7

[Tj= :_ q 7_; Z,v-_A.

J, _

7 = "'.'211¢ = "_7_ _¢_ PSI

i _U._ T'_ TN,- = _,,HDUNDAt'.IC"[" OF"-/"HE 5U,°I_O_'I".,,7"H,_ 7"/.J_. "',.

' t_' t STOL- TRAILINGEDGE

)

ItlDOARDFLAPSJ

(: , "i: ' . 77. '........ "

O0000002-TSBO5

O0000002-TSB06

. . • #

• *,_ I j'_ dD ' -- p " b, i

s

' '"'" ,':,-_.I i"""" ...."._)

Lu .=_.,__"-.,..,._,1 _.,v (;, v, )

?; ,j 2"_*,1.

--/'.'7,,..,-- -- ...........2 "/ :__

/4,,,=0 =: -- __. _ ,.--.'>'.._._')"--- /e,_/z,,v-/..,_:

_.'_I._._.= - ._a',--'.'- .I- I_ = ..... _ '.t t" I(_ "

._,27 z, Io &' _ = -'_o:......... ,_ - --o,oa._ ZN., 0 ;< I0 6 _ Z,

4

Si'OL- TRAILINGEDGE _ ._INBOARDFLAPS

I ,.i79 .........

t

1

O0000002-TSB07

1

%

$TOL- TRAILINGEDGE ,fINBOARDFLAPS

, _,,?_I i_I ,,i

80 "'i

O0000002-TSB08

..... t _'-g 7 2 '; ,'..' i

"' ,.;.a I_1"._,. "..:

!.u :- _a.-_" z,v/r_l. (n' "• ' I. 2 _- = B 0, _ ;< I {) j'_.3."ql',

,_, ." . a .'."9,/0 r/v, 2.-- .3 _ , a a • _1. l['- 0.3 ta• '= •

"" Lu _ _ LU 0..'-"

' 2. :a p.,

�v/x=O- = -- = --

J:'6,="_.= - i?..',-_( /_. _,_)=_.jq.=_rC,,.,.$z)(jG.t,_)-//lao#

" -- .._'._._ q- _1,_ "BE_ --./MOO "=" 4z_.._& Itt-L,6,

" N -(---)'- (_" °'' " =s,)-H/,,o-" ZI_..S'¢_ "t" ""_ 7t7--//IEIO = Io._lT_ .FIV-L,'_,,7"., ,.a

--'_ = ---- = '" = I_,'_O P.-._I"

- -- .80, o x tO x _._,gZ = --,OZ_? IN.P #, STOL - TRAILING EDGE

i II'IIIO,._,RDFLAP _.b

81 .....I

O0000002-TSB09

A-_._RE_Q. = 3._75J"N. 2 " '

, Tyy = 3,?_O.r.N."

I_z = I_.?"., T_ v

( L. %Z _ , _ _1

It

5,6 "

P

*" r'-'_t

B-B I,.>tb A FCE n = #;19,3" J'N. :_

(r_ Xyy : 1"7, SO _rN. '1 ptr,_

¢,, _ ,

ITOL.- TRAILINGEDGENDOARDFLAP i

:i

O0000002-TSBIO

8,:¢

I

;:/I_.:_;3ARD FLAtPLS_-A /'4

8.20

II, SO

--"*._ ""-" .I_ +

.:[.tJ_5"_Ai._-9 FLAP

I f--_F--.--I,.........

_'-_

A = N. 6Z IN. _ _-" F;TY = 7,07 IN. e

I_,.=-- Z.2_ Zl¢.e A = _. 4tZIgy = 15._8 ItV. _ .......

ILl = 3._D IN. e

I

.--- .--._._ ('rvP.)q.Z..... o,. . ............

!

_L..ooI--- --1 r----_=& 3.00 ....

_-_ I-I .......

/_ = _._0 IN. _" A = 2,77"2N, z

Iy_ " 12, Y£= IN.9 2yy = 8,71 IN. _

I_ = 2.70 i_,v /e_= 1.57i/V_ ,'t ;.

4

(. -.";5E_.TZON F-F IS IN _ T_ANSFTI_AI RgGIoN, m""_.STOL- TRAILINGEDGEINBOARDFLAP......... >'

O0000002-TsB13

Ira- . . .

'I ..... , " ' " ,;)

,_./ ('i'_,,_- ;,_,_- / /,/t ('ToW/iL p,la_w._"H'r)

.,_0 ,_ r ._,-l."_ Pl_. _ " _ D'_ _J;- _ _,'t-1.._ o

,_'_- STOL.-TRAILIFIGEOGECEtlTERFLAPS

ig

- (.

87

)

NNNNNNNg_T_Pna

_Y,_" /_ t,.X /.00. _Mz'=- 2 + 2

03o,= = _(, i ?,67) _!.... " = -- 1005q ZN,-.t.B,

MX= o 2.

U.J= _2Z.8/.Z'N, 0.= Iq, 67IN, L= _.V, ZtI,#, _"",OZS-Ioo59 x I.OS t_

Z 2.$

c'z T _,! 2 2_ , = .,_l _"' psl

= - ,O_,zl_ IN. .. E-_._.O,XIO _" PSIl

FL AP NO. "2. (C_NTE_ )

/'//_ = m -- - 2. = _ : ../ ._._.Y l ItV - L _. Ii

6U = 7o, I,,B./.FN. i

__/'4C= I_£_lx 1.2.. : -b 7737 PSIZ 2.1

• j .. *

IoB_oZ,,q¢: _ ¢.,_ x.025

bOO.=" _,._x ('q. 67,) _" i "i

= - ------ -- -- = - 6_ .T,q-L_. 'Mx = o 2 2 _ = ._, z._/IN. ....

_.=i _ z_ x 1. 31_ = : 2.9 - = _ ._gZ P._£

T _Yt , = IzzZ/ P5£ .t,1"

_ = --,OlqIN, I£ : _O*O_t 106P.!_I ,

STOL- T_IL_I16"_E

CENTERFLAP ' i

O0000002-TSC02

STCL- TRAILING EOGECENTERFLAP I_

t

4

(4_

89 ....... h

'i

00000002-TSC03

J

C .5i,I7_R .,c'/-,4 ,o

,_ "'_r"_"qC_'C [,J/O (TYP.) _ : I o_ ('T'Y__/____

L.__--_ -TI _-T, '

....... _.VZ ..

......... IE- E .....

.r-ZA : 2._'_A ZN, :_

ryy : 5,_ Itl,_ 'P'=: 2.gz.Zyy: 2.66 IN. _'

I_: t. V 6 ZJ'/. V.ra_" : I,17 /'Iv'.'_

r

, --T- _,m4'L

_4,_,..

} Z_ t._BZH. _

i i $TOL- TRAILINGEDGE•CENTERFLAP

00000002-TSC04

,5,73

y

I

( _"-'-_."--1 __

A = .3. _"6 ZN? (7or',_.:

,'t = 1,718 ._N, _

"_, H-

±

X,=)C;-, O,L"r'.l_-sa _Ec-rIo/J...; ,_RE .Sy/..,'/.t_.'T,Rz_,,_. WZTH l_#,':.SPF.C'T 7"C_ A VE_"C._C¢'.I_ _,

STOL- "rRAILDIGEO6E

I'

00000002-TSC06

I /

J_' rj

_, + +, . , .... _.,..• +

• " p

_, _ :

\ _ .':' ,

..+ • • . n%1"' _

•. . i. i .

l/ •( , _: a

I

• b +

, _ _ ":. ..I, + ,_ _,I'1 '

_ c_ a_. t..," _ _+" .. . ...,..+

// ,. ,,_13 . . . . .

• * + +. ,'+ + . ,

+ | . .+'

/ ,+| "A .,.. +'! .

e

C+ // "! ..3 ... .

+ ++_ "I: ".+:'-.+++ _ + + _ + +-- + •

O0000002-TSC07

I

',O,_,'.& ""' /:_;:_• ) _ °.

, _ ' 71/ :' "J_'g:",_. L. ,_I.9 ,_I.1._'I_I ; "" "

/ _' '3'? F-,L.'_.-_ NO. _3 _ _ _0 £tl- " _. (%:t,;¢r }¢$ •

•7/77 _-..,"_

:;.;_19 ,r=",C.,'a ._ tx/ra. I l t _ _--',a7

_,:;-f,..rN_/_.#,3t"A-_'iq'l-.._.,,-.,'.,OtgT"/'//,.:_ ,o.z'._/O'T",:"_OZ/'17',.'D//i,'-/_P NO. I ))_'

STOL - TRAII.IHGEDGE

OUTBOARDFLAP _'

_4 .._

• , )_

' _L I 7 iii i L " - L_

O0000002-TSC08

l

• ,. , ..'_. _ ( °'::.t,T}'.O/4a, I)'" U ..... /

I ........ ""?• ,.R t_

(0 ;:_ ";" l.O k 'X I_J .%"a

,'-l;t =_ .-. -----?. = .._(/'_,, ,yj = -. _,_,.-31'; £_-t-,_.

..: /,q e #all, ;< , '6 _/ 4. _'I i.. 2 P._!" 0 "" , _0

_ -- - ' = _,B3q P.'$%"¢Z" "_ :'; -

5"_ - -rfl.

1--L,:v No. z (ours_P, ea)U} "a _ o ,LB.�Jr'l,.a.. = l'i, "Y'.= Z_'.I, Z. ,, qo..._'q

Ua& _- - &o a (1_1.44) _--- --- -- = - &2_.,_ ZIY-_&M×=o 2. _.

. IZdc (_,2_.ga .gD',. = _£_? P.3Z"_ = 7" = -" I, n5

9 (..,2..';2_)...... = ._Bz4 P ,_.t"

"-_" ''" 2 _ _.'7 :_ ,020

l_= -,O_GO J[Id,

FLAP /,10.3 (OUT_(JAFt, D)PJ= 2.8 L[_/ZN.

_ LuO, _ 2_ a, (1_1, G7_ "

# 'l / I, >e 1, c; _ ,,•F_= I./._ = ¥_-o PSZ

k

,% _..G_"_;-:-.--= = 1707 PBI

STOL- TRAILINGEDGEOUTBOARDFLAP

9B

'i

00000002-TSC09

, , • , _,, 9 .-"e., --. '., /: L. ,'_ ;:;' ,,- ,,5 '" , ,/'_"

;.... __._..._, .....

{

F.oEI

t/_P._=,_ "- ._. 2 _ IN, z

= T2Z yy 12. "" 2"/'1.4

F- r 1".D- D

N'°'g_ • = _,_N r; "¢7"

2yy = _-.18 21V,e _.'

STOL- TRAILINGEDGE

OUTBOARDFLAP ti

Im"',';'l! ,

O0000002-TSCIO

I

,. • - . , a ., ,

• i p

j r-.13'i

--_-J -T l

• -, _C,"

F 1

-_ _-_

_. Lye, = q. I=/ rtt, _ II_._. a,:_.7.,s: j !'J

97

O0000002-TSCl 1

• .T- cc. --::,'.'. "" ._O ('r_,-,:,,)

!_ ;Z. '/._;"

L_-_- ----q----2_

Zyy = /. _,? $N._ A = I,._ IH _

7

:

:#

(

I

, __-_, "-F

C A -- 2,/7 £_/o,_ ""

$TOL- TRAILII;GEOGE• 7_.M_ = , '_1 I/V_ OUTBOARDFLAP

)

, .............. I_................ ," L--_

!

...._:_ Zo_

PYLON STRUCTURE

!.

The pylon structureconsistsof aluminumalloy skin and longerons. Thefour lengeronsform the cornersof the box beam and torque box. The pylonis internallystiffenedwith franmsand bulkheads. The skin gage is0.070 inches,except for the bottom panel aft of the thrustmount and

side load fittingwhich is .080 inch.

A criteriawas establish_dfor the outboardenginenacelleunder the fo]]ow-ing conditions:

I. Flight pullupwith roll and 1.5 cruise thrust.

2. NegativeG flightmaneuverwith 1.5 cruise thrust.

3. Landingcondition,positiveG.

4. Roll condition,2.5 side

5. Landingcondition,negativeG

6. Takeoffcondition,negativeG, with 1.5 x maximumthrust.

7. Engine seizure.

A summaryload sheet is presentedshowingthe distributionof loads appliedto the pylnn _t the front,thrust,vertical,and side mounts.(Three criticalconditionsdesign the pylon structure:

I. Landingcondition,positiveG, designsthe lower Iongerons.

! 2. Takeoff condition,negativeG, with 1.5 tin_s maximumthrustdesignsthe upper longerons.

i

3. Engine seizureconditiondesignsthe shear panels aft of thethrustmount.

m

t'

C sToL-ENGI,.tONSTrUCTUrEi

; 103 , t:!

i00000002-TSD03

l...... 1,._'_"__.._J

I f--,o7o

.......r.....T_--- {• ,Q t_ A_,_.r.J = .IZ?

1.2.9"

Z A'r_'mL" ,_c'.3Z

• .-2A=.Z--_ .re,'.z

A.-.,., = ,/_.9', /q .ZZ_F

- I_ ?$,

7- _- ,017_,'_ 4c

F_. -_ #6.0 ,v_r (_4c..,_,,4. 7_.zzt )

i

' 7 _.°7°_&__

....:,_-=_E-------_-e. }-i1.2_ ,.-_ " .l_,_ AOK-r_¢ "lZ°'

" I A Total : ,GI.'_.!

,. _ A = ,3_ 2",',k"

_ o. , ,J ' .... r" .. m,. , / _.,m I

"1["-" _ •-_9___..""..---- = .... , - Z_.z _ = 0"] &:', -,7' •

t "

_ STOL- DI61ll_. PYLOflSTRUCTURE '

!

[ .... 109.

00NNNNNg_T._F_Na

;:;/ :_/-:.,_,,.'i_._;._..!,

_'_! STOL- EtIGIrIF_PYLONSTRUCTURE

110 ,

00000002-TSD10

,I. ' ,, '/..:2 ,_/

• ' # ¢ # •

: ._, ...,.- , , ,.': i .'t,..,/ -'K /,'11",'tJ,' , , /;,','.., _ , . .r'. .-T.r : _;

''"--I_ ':'_''-" C_,'I,:_..]'C.".'_/./t i?..o/,1 Z, _.-,_",P

!

f?X

1I

,'o3o7 I _,.,_ m-[_[7-2.750

i'/_/.,t,,I,_ I.:E'.'[_ "r,"-/.2" _7 8o L tS. L O,4.D "TD "I";/W C [:'tl'7",_ _ _31= ""i'H,3- F-,,q/;,"."-::

7.= 11/.5" ._ _ o _ ,,_._, ,. ,..- + /o B_'/ ,_ 1o -= I .V,'_a_ 3 _ .[ H- I.__..-, "7" lq,-t_._._,O

._./, _ >: z "30_,., 3 1_ .,..._./z,v.

z_". _/ ( ), .[Z,_ ._ _ _ [

.. ':>,: , f.£7o)_/_,_o ,=s,-(,/._-_r,r_,._,.;,,,,.::

• "-"-T"-- :" 2_z_ - s7.;'oP_/" (_r,_s_ z_ _rro,.4 ,-,.,,,,,-,.,• _,xl._7_)

F..,_c_.' = 3.(;.x IO._ _1o k _",o/ =tZ_l....5"o F"sZ, "5",'/...._:..,,.,' ,.'" /t ......, _,S._UI'//..='Z_ /_II_Y/A7 _ /J,_7_'V_.&'N_"_ CLN/vIP/_'D /4ND• .::,Z_':'l_L 'r" 5, t)t.'.."_o P, T-_D E'=_ b.'_

-_.,, (" STOL .- ENGINEPYLONSTRUCTURE :_

, _U

00000002-TSDll

! .

! ..

t

$TOL - ENGItlEPYLON STRUCTURE

)

.i 1i

00000002-TSD12

I

..... 9 N

o_ " ; _ .'" • [)/; // -;7," , _ _" . •.... I, r_ ";'_/:)_'7",'_,'t 2 , ".'....j,., j ., t j - ,...... ., .... ,...a ,',_r_ri.:'; ,:,'_...-_.'_oir_'/.;' /;.-;' I',')._L2._. , '" -"l"" ."

,_; Z,'_ /,-.I _ z-.'1 ..... :',':. '_ .r. ,-_, .,_ "._ ,Lc,.

(.,/,/

.. , .. .."=s / ,o_. r /.• .. _ " _¢ _,,_i "2 -- 0

*,,jQ. , ':27 ,,'.,_

_- /:07 _"

:': = .9-,"2"_z_'=-_(_) = 5,7;_IO. OXlO_'X('/o') = 27_,'_$2""d.>'_,

O. 10

,(

II_ !,

6.

_" STOL- ENGINEPYLO;.ISTRUCTURE _,

l

_, 113

00000002-TSD13

O0000002-TSE01

Section IV, t.IEIGIITS

' The welght,r_}assdistribution,and moment of irJertiadata for theSTOL wing is based on a combinationof structuraland deterministicestlmating methods.

The followingcomponentswere evaluateddeterministicallybased onpreliminarystress sizing.

Wing Box shell structure

Trailingedge flap supporttracksand carriages

The engine and nacelleweight is based on the S-3A actual weightdata.All other componentweightswere obtainedfrom conventionalpreliminarydesign statisticalwight estimatingmethods.

The centrodiallocationsof tilewing componentsare shown onDrawingPD-III-2-OODmass propertie_layout.

Tables IV-l through IV-9are summarytables indicatingweights,centroidlocationand inCrtiasof wing and components.

i Figures IV-l and IV-2 are mass weight distributionplots for the wingbox and completewing per side, respectively.

-o

i 117

00000002-TSE03

.....J

| '.

L.t.l

Ld

<

I

©

W

-'If o

_L

* Z

_o °

m %

ed

.:_ o o. o oin d_SONf10 md N .i_

_' 127

00000002-TSE43

w D I '

0 '"_-- 1

" °JilU'_ a-

, F

_ '_i '!.

!- °" I

129

O0000002-TSE14